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A deterministic ordinary differential equation model for the dynamics and spread of Ebola Virus Disease is derived and studied.
The model contains quarantine and nonquarantine states and can be used to evaluate transmission both in treatment centres and
in the community. Possible sources of exposure to infection, including cadavers of Ebola Virus victims, are included in the model
derivation and analysis. Our model’s results show that there exists a threshold parameter, 𝑅

0
, with the property that when its value

is above unity, an endemic equilibrium exists whose value and size are determined by the size of this threshold parameter, and when
its value is less than unity, the infection does not spread into the community. The equilibrium state, when it exists, is locally and
asymptotically stable with oscillatory returns to the equilibrium point. The basic reproduction number, 𝑅

0
, is shown to be strongly

dependent on the initial response of the emergency services to suspected cases of Ebola infection. When intervention measures
such as quarantining are instituted fully at the beginning, the value of the reproduction number reduces and any further infections
can only occur at the treatment centres. Effective control measures, to reduce 𝑅

0
to values below unity, are discussed.

1. Introduction and Background

The world has been riveted by the 2014 outbreak of the Ebola
Virus Disease (EVD) that affected parts of West Africa with
Guinea, Liberia, and Sierra Leone being the most hard hit
areas. Isolated cases of the disease did spread by land to Sene-
gal and Mali (localized transmission) and by air to Nigeria.
Some Ebola infected humans were transported to the US
(except the one case that traveled to Texas and later on died)
and other European countries for treatment. An isolated case
occurred in Spain, another in Italy (a returning volunteer
health care worker), and a few cases in the US and the UK
[1–3]. Though dubbed the West African Ebola outbreak, the
movement of patients and humans between countries, if not
handled properly, could have led to a global Ebola pandemic.
There was also a separate Ebola outbreak affecting a remote
region in theDemocratic Republic ofCongo (formerly Zaire),
and it was only by November 21, 2014 that the outbreak was
reported to have ended [2].

The Ebola Virus Disease (EVD), formally known as Ebola
haemorrhagic fever and caused by the Ebola Virus, is very
lethal with case fatalities ranging from 25% to 90%, with a
mean of about 50% [2]. The 2014 EVD outbreak, though not
the first but one of many other EVD outbreaks that have
occurred in Africa since the first recorded outbreak of 1976, is
the worst in terms of the numbers of Ebola cases and related
deaths and the most complex [2]. About 9 months after the
identification of a mysterious killer disease killing villagers in
a small Guinean village as Ebola, the 2014West African Ebola
outbreak, as of December 24, 2014, had up to 19497 Ebola
cases resulting in 7588 fatalities [1, 3, 4], a case fatality rate of
about 38.9%. By December 2015, the number of Ebola Virus
cases (including suspected, probable, and confirmed) stood at
28640 resulting in 11315 fatalities, a case fatality rate of 39.5%
[3, 5].

Ebola Virus, the agent that causes EVD, is hypothesised
to be introduced into the human population through contact
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with the blood, secretions, fluids from organs, and other
body parts of dead or living animals infected with the virus
(e.g., fruit bats, primates, and porcupines) [2, 6]. Human-to-
human transmission can then occur through direct contact
(via broken skin or mucous membranes such as eyes, nose,
or mouth) with Ebola Virus infected blood, secretions, and
fluids secreted through organs or other body parts, in, for
example, saliva, vomit, urine, faeces, semen, sweat, and breast
milk. Transmission can also be as a result of indirect contact
with surfaces and materials, in, for example, bedding, cloth-
ing, and floor areas, or objects such as syringes, contaminated
with the aforementioned fluids [2, 6].

When a healthy human (considered here to be suscepti-
ble) who has no Ebola Virus in them is exposed to the virus
(directly or indirectly), the human may become infected, if
transmission is successful. The risk of being infected with the
Ebola Virus is (i) very low or not recognizable where there is
casual contact with a feverish, ambulant, self-caring patient,
for example, sharing the same public place, (ii) low where
there is close face-to-face contact with a feverish and ambu-
lant patient, for example, physical examination, (iii) high
where there is close face-to-face contact without appropriate
personal protective equipment (including eye protection)
with a patient who is coughing or vomiting, has nose-
bleeds, or has diarrhea, and (iv) very high where there is
percutaneous, needle stick, or mucosal exposure to virus-
contaminated blood, body fluids, tissues, or laboratory speci-
mens in severely ill or knownpositive patients.The symptoms
of EVD may appear during the incubation period of the
disease, estimated to be anywhere from 2 to 21 days [2, 7–
9], with an estimated 8- to 10-day average incubation period,
although studies estimate it at 9–11 days for the 2014 EVD
outbreak inWest Africa [10]. Studies have shown that, during
the asymptomatic part of the Ebola Virus Disease, a human
infected with the virus is not infectious and cannot transmit
the virus. However, with the onset of symptoms, the human
can transmit the virus and is hence infectious [2, 7].The onset
of symptoms commences the course of illness of the disease
which can lead to death 6–16 days later [8, 9] or improvement
of health with evidence of recovery 6–11 days later [8].

In the first few days of EVD illness (estimated at days 1–3
[11]), a symptomatic patient may exhibit symptoms common
to those like the malaria disease or the flu (high fever,
headache, muscle and joint pains, sore throat, and general
weakness). Without effective disease management, between
days 4 and 5 to 7, the patient progresses to gastrointestinal
symptoms such as nausea, watery diarrhea, vomiting, and
abdominal pain [10, 11]. Some or many of the other symp-
toms, such as low blood pressure, headaches, chest pain,
shortness of breath, anemia, exhibition of a rash, abdominal
pain, confusion, bleeding, and conjunctivitis, may develop
[10, 11] in some patients. In the later phase of the course of
the illness, days 7–10, patients may present with confusion
and may exhibit signs of internal and/or visible bleeding,
progressing towards coma, shock, and death [10, 11].

Recovery from EVD can be achieved, as evidenced by the
less than 50% fatality rate for the 2014 EVD outbreak in West
Africa. With no known cure, recovery is possible through
effective disease management, the treatment of Ebola-related

symptoms, and also the effective protection by the patient’s
immune response [7]. Some of the disease management
strategies include hydrating patients by administering intra-
venous fluids and balancing electrolytes and maintaining the
patient’s blood pressure and oxygen levels. Other schemes
used include blood transfusion (using an Ebola survivor’s
blood) and the use of experimental drugs on such patients
(e.g., ZMAPP whose safety and efficacy have not yet
been tested on humans). There are some other promising
drugs/vaccines under trials [2]. Studies show that once a
patient recovers from EVD they remain protected against the
disease and are immune to it at least for a projected period
because they develop antibodies that last for at least 10 years
[7]. Once recovered, lifetime immunity is unknown or
whether a recovered individual can be infected with another
Ebola strain is unknown. However, after recovery, a person
can potentially remain infectious as long as their blood and
body fluids, including semen and breast milk, contain the
virus. In particular, men can potentially transmit the virus
through their seminal fluid, within the first 7 to 12 weeks
after recovery from EVD [2]. Table 1 shows the estimated
time frames and projected progression of the infection in an
average EVD patient.

Given that there is no approved drug or vaccine out
yet, local control of the Ebola Virus transmission requires
a combined and coordinated control effort at the individual
level, the community level, and the institutional/health/gov-
ernment level. Institutions and governments need to educate
the public and raise awareness about risk factors, proper hand
washing, proper handling of Ebola patients, quick reporting
of suspected Ebola cases, safe burial practices, use of public
transportation, and so forth. These education efforts need
to be communicated with community/chief leaders who are
trusted by members of the communities they serve. From a
global perspective, a good surveillance and contact tracing
program followed by isolation and monitoring of probable
and suspected cases, with immediate commencement of
disease management for patients exhibiting symptoms of
EVD, is important if we must, in the future, elude a global
epidemic and control of EVD transmission locally and
globally [2]. It was by effective surveillance, contact tracing,
and isolation andmonitoring of probable and suspected cases
followed by immediate supportive care for individuals and
families exhibiting symptoms that the EVD was brought
under control in Nigeria [17], Senegal, USA, and Spain [1].

Efficient control and management of any future EVD
outbreaks can be achieved if new, more economical, and real-
izable methods are used to target and manage the dynamics
of spread as well as the population sizes of those communities
that may be exposed to any future Ebola Virus Disease
outbreak. More realistic mathematical models can play a role
in this regard, since analyses of suchmodels can produce clear
insight to vulnerable spots on the Ebola transmission chain
where control efforts can be concentrated. Good models
could also help in the identification of disease parameters that
can possibly influence the size of the reproduction number
of EVD. Existing mathematical models for Ebola [14, 16, 18–
21] have been very instrumental in providing mathematical
insight into the dynamics of Ebola Virus transmission. Many
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Table 1: A possible progression path of symptoms from exposure to the Ebola Virus to treatment or death. Table shows a suggested transition
and time frame in humans, of the virus, from exposure to incubation to symptoms development and recovery or death. This table is adapted
based on the image in the Huffington post, via [11]. Superscript a: for the 2014 epidemic, the average incubation period is reported to be
between 9 and 11 days [10]. Superscript b: other studies reported a mean of 4–10 days [8, 9].

Exposure

Incubation
period Course of illness Recovery or death

Range: 2 to 21
days from
exposure

Range: 6 to 16 days from the end of the incubation
period Recovery: by the

end of days 6–11
Death: by the end

of days 6–16Probable Early symptomatic Late symptomatic
Days 1–3 Days 4–7 Days 7–10

An individual
comes in
contact with an
Ebola infected
individual (dead
or alive) or have
been in the
vicinity of
someone who
has been
exposed.

Average of 8–11a
days before

symptoms are
evident.
Another

estimate reports
an average of
4–10b days.

Patients exhibit
malaria-like or

flu-like symptoms:
for example, fever
and weakness.

Patients progress to
gastrointestinal
symptoms: for

example, nausea,
watery diarrhea,
vomiting, and
abdominal pain.
Other symptoms
may include low
blood pressure,

anemia, headaches,
chest pain,

shortness of breath,
exhibition of a
rash, confusion,
bleeding, and
conjunctivitis.

Patients may
present with

confusion and may
exhibit signs of
internal and/or
visible bleeding,

potentially
progressing

towards coma,
shock, and death.

Some patients may recover, while
others will die.

Recovery typically requires early
intervention.

of these models have also been helpful in that they have
provided methods to derive estimates for the reproduction
number for Ebola based on data from the previous outbreaks.
However, few of the models have taken into account the fact
that institution of quarantine states or treatment centres will
affect the course of the epidemic in the population [16]. It is
our understanding that the way the disease will spread will be
determined by the initial and continual response of the health
services in the event of the discovery of an Ebola disease
case. The objective of this paper is to derive a comprehensive
mathematical model for the dynamics of Ebola transmission
taking into consideration what is currently known of the
disease. The primary objective is to derive a formula for the
reproduction number for Ebola Virus Disease transmission
in view of providing a more complete and measurable index
for the spread of Ebola and to investigate the level of impact
of surveillance, contact tracing, isolation, and monitoring of
suspected cases, in curbing disease transmission. The model
is formulated in a way that it is extendable, with appropriate
modifications, to other disease outbreaks with similar char-
acteristics to Ebola, requiring such contact tracing strategies.
Our model differs from other mathematical models that have
been used to study the Ebola disease [14, 15, 18, 20–22] in that
it captures the quarantined Ebola Virus Disease patients and
provides possibilities for those who escaped quarantine at the
onset of the disease to enter quarantine at later stages. To the
best of our knowledge, this is the first integrated ordinary
differential equation model for this kind of communicable
disease of humans. Our final result would be a formula for

the basic reproduction number of Ebola that depends on the
disease parameters.

The rest of the paper is divided up as follows. In Section 2,
we outline the derivation of the model showing the state
variables and parameters used and how they relate together
in a conceptual framework. In Section 3, we present a
mathematical analysis of the derived model to ascertain that
the results are physically realizable. We then reparameterise
the model and investigate the existence and linear stability of
steady state solution, calculate the basic reproduction num-
ber, and present some special cases. In Section 4, we present
a discussion on the parameters of the model. In Section 5, we
carry out some numerical simulations based on the selected
feasible parameters for the system and then round up the
paper with a discussion and conclusion in Section 6.

2. The Mathematical Model

2.1. Description of Model Variables. We divide the human
population into 11 states representing disease status and
quarantine state. At any time 𝑡 there are the following.
(1) Susceptible Individuals. Denoted by 𝑆, this class also
includes false probable cases, that is, all those individuals who
would have displayed early Ebola-like symptoms but who
eventually return a negative test for Ebola Virus infection.
(2) Suspected Ebola Cases. The class of suspected EVD
patients comprises those who have come in contact with, or
been in the vicinity of, anybody who is known to have been



4 Computational and Mathematical Methods in Medicine

sick or died of Ebola. Individuals in this class may or
may not show symptoms. Two types of suspected cases are
included: the quarantined suspected cases, denoted by 𝑆

𝑄
,

and the nonquarantined suspected case, denoted by 𝑆
𝑁
. Thus

a suspected case is either quarantined or not.
(3) Probable Cases. The class of probable cases comprises all
those persons who at some point were considered suspected
cases and who now present with fever and at least three other
early Ebola-like symptoms. Two types of probable cases are
included: the quarantined probable cases, denoted by 𝑃

𝑄
,

and the nonquarantined probable cases, 𝑃
𝑁
. Thus a probable

case is either quarantined or not. Since the early Ebola-like
symptoms of high fever, headache, muscle and joint pains,
sore throat, and general weakness can also be a result of other
infectious diseases such asmalaria or flu,we cannot be certain
at this stage whether or not the persons concerned have
Ebola infection. However, since the class of probable persons
is derived from suspected cases, and to remove the uncer-
tainties, we will assume that probable cases may eventually
turn out to be EVD patients and if that were to be the case,
since they are already exhibiting some symptoms, they can
be assumed to be mildly infectious.
(4) Confirmed Early Symptomatic Cases. The class of con-
firmed early asymptomatic cases comprises all those persons
who at some point were considered probable cases and a
confirmatory laboratory test has been conducted to confirm
that there is indeed an infectionwith Ebola Virus.This class is
called confirmed early symptomatic because all that they have
as symptoms are the early Ebola-like symptoms of high fever,
headache, muscle and joint pains, sore throat, and general
weakness. Two types of confirmed early symptomatic cases
are included: the quarantined confirmed early symptomatic
cases 𝐶

𝑄
and the nonquarantined confirmed early symp-

tomatic cases 𝐶
𝑁
. Thus a confirmed early symptomatic case

is either quarantined or not. The class of confirmed early
symptomatic individuals may not be very infectious.
(5) Confirmed Late Symptomatic Cases.The class of confirmed
late symptomatic cases comprises all those persons who at
some point were considered confirmed early symptomatic
cases and in addition the persons who now present withmost
or all of the later Ebola-like symptoms of vomiting, diarrhea,
stomach pain, skin rash, red eyes, hiccups, internal bleeding,
and external bleeding. Two types of confirmed late symp-
tomatic cases are included: the quarantined confirmed late
symptomatic cases 𝐼

𝑄
and the nonquarantined confirmed late

symptomatic cases 𝐼
𝑁
. Thus a confirmed late symptomatic

case is either quarantined or not. The class of confirmed
late symptomatic individuals may be very infectious and any
bodily secretions from this class of persons can be infectious
to other humans.

(6) Removed Individuals. Three types of removals are consid-
ered, but only two are related to EVD.The removals related to
the EVD are confirmed individuals removed from the system
through disease induced death, denoted by 𝑅

𝐷
, or confirmed

cases that recover from the infection denoted by 𝑅
𝑅
. Now, it

is known that unburied bodies or not yet cremated cadavers
of EVD victims can infect other susceptible humans upon

contact [7]. Therefore, the cycle of infection really stops only
when a cadaver is properly buried or cremated. Thus mem-
bers from class, 𝑅

𝐷
, representing dead bodies or cadavers

of EVD victims are considered removed from the infection
chain, and consequently from the system, only when they
have been properly disposed of. The class, 𝑅

𝑅
, of individuals

who beat the odds and recover from their infection are
considered removed because recovery is accompanied with
the acquisition of immunity so that this class of individuals
are then protected against further infection [7] and they no
longer join the class of susceptible individuals. The third
type of removal is obtained by considering individuals who
die naturally or due to other causes other than EVD. These
individuals are counted as 𝑅

𝑁
.

The state variables are summarized in Notations.

2.2. The Mathematical Model. A compartmental framework
is used to model the possible spread of EVD within a
population.Themodel accounts for contact tracing and quar-
antining, in which individuals who have come in contact or
have been associated with Ebola infected or Ebola-deceased
humans are sought and quarantined. They are monitored for
twenty-one days during which they may exhibit signs and
symptoms of the Ebola Virus or are cleared and declared free.
We assume thatmost of the quarantining occurs at designated
makeshift, temporal, or permanent health facilities. However,
it has been documented that others do not get quarantined,
because of fear of dying without a loved one near them or fear
that if quarantined theymay instead get infected at the centre,
as well as traditional practices and belief systems [14, 16, 22].
Thus, there may be many within communities who remain
nonquarantined, and we consider these groups in our model.
In all the living classes discussed, we will assume that natural
death, or death due to other causes, occurs at constant rate 𝜇
where 1/𝜇 is approximately the life span of the human.

2.2.1. The Susceptible Individuals. The number of susceptible
individuals in the population decreases when this population
is exposed by having come in contact with or being associated
with any of the possibly infectious cases, namely, infected
probable case, confirmed case, or the cadaver of a confirmed
case. The density increases when some false suspected indi-
viduals (a proportion of 1 − 𝜃

2
of nonquarantined and 1 − 𝜃

6

of quarantined) and probable cases (a proportion of 1 − 𝜃
3

of nonquarantined individuals and 1 − 𝜃
7
of quarantined

individuals) are eliminated from the suspected and probable
case list.We also assume a constant recruitment rateΠ as well
as natural death, or death due to other causes. Therefore the
equation governing the rate of change with time within the
class of susceptible individuals may be written as

𝑑𝑆

𝑑𝑡
= Π − 𝜆𝑆 + (1 − 𝜃

3
) 𝛽
𝑁
𝑃
𝑁
+ (1 − 𝜃

2
) 𝛼
𝑁
𝑆
𝑁

+ (1 − 𝜃
6
) 𝛼
𝑄
𝑆
𝑄
+ (1 − 𝜃

7
) 𝛽
𝑄
𝑃
𝑄
− 𝜇𝑆,

(1)

where 𝜆 is the force of infection and the rest of the parameters
are positive and are defined in Notations. We identify two
types of total populations at any time 𝑡: (i) the total living



Computational and Mathematical Methods in Medicine 5

population,𝐻
𝐿
, and (ii) the total living population including

the cadavers of Ebola Virus victims that can take part in the
spread of EVD,𝐻. Thus at each time 𝑡 we have

𝐻
𝐿 (𝑡) = (𝑆 + 𝑆𝑁 + 𝑆𝑄 + 𝑃𝑁 + 𝑃𝑄 + 𝐶𝑁 + 𝐶𝑄 + 𝐼𝑁

+ 𝐼
𝑄
+ 𝑅
𝑅
) (𝑡) ,

(2)

𝐻(𝑡) = (𝑆 + 𝑆
𝑁
+ 𝑆
𝑄
+ 𝑃
𝑁
+ 𝑃
𝑄
+ 𝐶
𝑁
+ 𝐶
𝑄
+ 𝐼
𝑁
+ 𝐼
𝑄

+ 𝑅
𝑅
+ 𝑅
𝐷
) (𝑡) .

(3)

Since the cadavers of EVD victims that have not been
properly disposed of are very infectious, the force of infection
must then also take this fact into consideration and be
weighted with 𝐻 instead of 𝐻

𝐿
. The force of infection takes

the following form:

𝜆 =
1

𝐻
(𝜃
3
𝜌
𝑁
𝑃
𝑁
+ 𝜃
7
𝜌
𝑄
𝑃
𝑄
+ 𝜏
𝑁
𝐶
𝑁
+ 𝜉
𝑁
𝐼
𝑁
+ 𝜏
𝑄
𝐶
𝑄

+ 𝜉
𝑄
𝐼
𝑄
+ 𝑎
𝐷
𝑅
𝐷
) ,

(4)

where 𝐻 > 0 is defined above and the parameters 𝜌
𝑁
,

𝜌
𝑄
, 𝜏
𝑁
, 𝜏
𝑄
, 𝜉
𝑁
, 𝜉
𝑄
, and 𝑎

𝐷
are positive constants as defined

in Notations. There are no contributions to the force of
infection from the 𝑅

𝑅
class because it is assumed that

once a person recovers from EVD infection, the recovered
individual acquires immunity to subsequent infection with
the same strain of the virus. Although studies have suggested
that recovered men can potentially transmit the Ebola Virus
through seminal fluids within the first 7–12 weeks of recovery
[2], and mothers through breast milk, we assume, here, that,
with education, survivors who recover would have enough
information to practice safe sexual and/or feeding habits to
protect their loved ones until completely clear.Thus recovered
individuals are considered not to contribute to the force of
infection.

2.2.2. The Suspected Individuals. A fraction 1 − 𝜃
1
of the

exposed susceptible individuals get quarantined while the
remaining fraction are not. Also, a fraction 𝜃

2
(resp., 𝜃

6
) of the

nonquarantined (resp., quarantined) suspected individuals
become probable cases at rate 𝛼 while the remainder 1 −
𝜃
2
(resp., 1 − 𝜃

6
) do not develop into probable cases and

return to the susceptible pool. For the quarantined indi-
viduals, we assume that they are being monitored, while
the suspected nonquarantined individuals are not. However,
as they progress to probable cases (at rates 𝛼

𝑁
and 𝛼

𝑄
),

a fraction 𝜃
2𝑏

of these humans will seek the health care
services as symptoms commence and become quarantined
while the remainder 𝜃

2𝑎
remain nonquarantined. Thus the

equation governing the rate of change within the two classes
of suspected persons then takes the following form:

𝑑𝑆
𝑁

𝑑𝑡
= 𝜃
1
𝜆𝑆 − (1 − 𝜃

2
) 𝛼
𝑁
𝑆
𝑁
− 𝜃
2𝑎
𝛼
𝑁
𝑆
𝑁
− 𝜃
2𝑏
𝛼
𝑁
𝑆
𝑁

− 𝜇𝑆
𝑁
,

𝑑𝑆
𝑄

𝑑𝑡
= (1 − 𝜃

1
) 𝜆𝑆 − (1 − 𝜃

6
) 𝛼
𝑄
𝑆
𝑄
− 𝜃
6
𝛼
𝑄
𝑆
𝑄
− 𝜇𝑆
𝑄
.

(5)

In the context of this model we make the assumption
that once quarantined, the individuals stay quarantined until
clearance and are released, or they die of the infection. Notice
that 𝜃

2
= 𝜃
2𝑎
+ 𝜃
2𝑏
, so that 1 − 𝜃

2
+ 𝜃
2𝑎
+ 𝜃
2𝑏
= 1.

2.2.3. The Probable Cases. The fractions 𝜃
2
and 𝜃

6
of sus-

pected cases that become probable cases increase the number
of individuals in the probable case class. The population of
probable cases is reduced (at rates 𝛽

𝑁
and 𝛽

𝑄
) when some

of these are confirmed to have the Ebola Virus through
laboratory tests at rates 𝛼

𝑁
and 𝛼

𝑄
. For some, proportions

1 − 𝜃
3
and 1 − 𝜃

7
, the laboratory tests are negative and the

probable individuals revert to the susceptible class. From the
proportion 𝜃

3
of nonquarantined probable cases whose tests

are positive for the Ebola Virus (i.e., confirmed for EVD), a
fraction, 𝜃

3𝑏
, become quarantined while the remainder, 𝜃

3𝑎
,

remain nonquarantined. So 𝜃
3
= 𝜃
3𝑎
+ 𝜃
3𝑏
.Thus the equation

governing the rate of change within the classes of probable
cases takes the following form:

𝑑𝑃
𝑁

𝑑𝑡
= 𝜃
2𝑎
𝛼
𝑁
𝑆
𝑁
− (1 − 𝜃

3
) 𝛽
𝑁
𝑃
𝑁
− 𝜃
3𝑎
𝛽
𝑁
𝑃
𝑁

− 𝜃
3𝑏
𝛽
𝑁
𝑃
𝑁
− 𝜇𝑃
𝑁
,

𝑑𝑃
𝑄

𝑑𝑡
= 𝜃
2𝑏
𝛼
𝑁
𝑆
𝑁
+ 𝜃
6
𝛼
𝑄
𝑆
𝑄
− (1 − 𝜃

7
) 𝛽
𝑄
𝑃
𝑄
− 𝜃
7
𝛽
𝑄
𝑃
𝑄

− 𝜇𝑃
𝑄
.

(6)

2.2.4. The Confirmed Early Symptomatic Cases. The fractions
𝜃
3
and 𝜃
7
of the probable cases become confirmed early symp-

tomatic cases thus increasing the number of confirmed cases
with early symptoms. The population of early symptomatic
individuals is reduced when some recover at rates 𝑟

𝐸𝑁
for

the nonquarantined cases and 𝑟
𝐸𝑄

for the quarantined cases.
Others may see their condition worsening and progress and
become late symptomatic individuals, in which case they
enter the full blown late symptomatic stages of the disease.
We assume that this progression occurs at rates 𝛾

𝑁
or 𝛾
𝑄
,

respectively, which are the reciprocal of themean time it takes
for the immune system to either be completely overwhelmed
by the virus or be kept in check via supportive mechanism.
A fraction 1 − 𝜃

4
of the confirmed nonquarantined early

symptomatic cases will be quarantined as they become late
symptomatic cases, while the remaining fraction 𝜃

4
escape

quarantine due to lack of hospital space or fear and belief
customs [16, 22] but become confirmed late symptomatic
cases in the community. Thus the equation governing the
rate of change within the two classes of confirmed early
symptomatic cases takes the following form:

𝑑𝐶
𝑁

𝑑𝑡
= 𝜃
3𝑎
𝛽
𝑁
𝑃
𝑁
− 𝑟
𝐸𝑁
𝐶
𝑁
− 𝜃
4
𝛾
𝑁
𝐶
𝑁

− (1 − 𝜃
4
) 𝛾
𝑁
𝐶
𝑁
− 𝜇𝐶
𝑁
,

𝑑𝐶
𝑄

𝑑𝑡
= 𝜃
3𝑏
𝛽
𝑁
𝑃
𝑁
+ 𝜃
7
𝛽
𝑄
𝑃
𝑄
− 𝑟
𝐸𝑄
𝐶
𝑄
− 𝛾
𝑄
𝐶
𝑄
− 𝜇𝐶
𝑄
.

(7)
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2.2.5. The Confirmed Late Symptomatic Cases. The frac-
tions 𝜃

4
and 𝜃

8
of confirmed early symptomatic cases who

progress to the late symptomatic stage increase the number
of confirmed late symptomatic cases. The population of late
symptomatic individuals is reduced when some of these
individuals are removed. Removal could be as a result of
recovery at rates proportional to 𝑟

𝐿𝑁
and 𝑟
𝐿𝑄

or as a result
of death because the EVD patient’s conditions worsen and
the Ebola Virus kills them. The death rates are assumed
proportional to 𝛿

𝑁
and 𝛿

𝑄
. Additionally, as a control effort

or a desperate means towards survival, some of the nonquar-
antined late symptomatic cases are removed and quarantined
at rate 𝜎

𝑁
. In our model, we assume that Ebola-related

death only occurs at the late symptomatic stage. Additionally,
we assume that the confirmed late symptomatic individuals
who are eventually put into quarantine at this late period
(removing them from the community) may not have long to
live but may have a slightly higher chance at recovery than
when in the community and nonquarantined. Since recovery
confers immunity against the particular strain of the Ebola
Virus, individuals who recover become refractory to further
infection and hence are removed from the population of
susceptible individuals. Thus the equation governing the
rate of change within the two classes of confirmed late
symptomatic cases takes the following form:

𝑑𝐼
𝑁

𝑑𝑡
= 𝜃
4
𝛾
𝑁
𝐶
𝑁
− 𝛿
𝑁
𝐼
𝑁
− 𝜎
𝑁
𝐼
𝑁
− 𝑟
𝐿𝑁
𝐼
𝑁
− 𝜇𝐼
𝑁
,

𝑑𝐼
𝑄

𝑑𝑡
= (1 − 𝜃

4
) 𝛾
𝑁
𝐶
𝑁
+ 𝜎
𝑁
𝐼
𝑁
+ 𝛾
𝑄
𝐶
𝑄
− 𝛿
𝑄
𝐼
𝑄
− 𝑟
𝐿𝑄
𝐼
𝑄

− 𝜇𝐼
𝑄
.

(8)

2.2.6. The Cadavers and the Recovered Persons. The dead
bodies of EVD victims are still very infectious and can
still infect susceptible individuals upon effective contact [2].
Disease induced deaths from the class of confirmed late
symptomatic individuals occur at rates 𝛿

𝑁
and 𝛿

𝑄
and the

cadavers are disposed of via burial or cremation at rate 𝑏.
The recovered class contains all individuals who recover from
EVD. Since recovery is assumed to confer immunity against
the 2014 strain (the Zaire Virus) [7] of the Ebola Virus,
once an individual recovers, they become removed from
the population of susceptible individuals. Thus the equation
governing the rate of change within the two classes of
recovered persons and cadavers takes the following form:

𝑑𝑅
𝑅

𝑑𝑡
= 𝑟
𝐸𝑁
𝐶
𝑁
+ 𝑟
𝐿𝑁
𝐼
𝑁
+ 𝑟
𝐸𝑄
𝐶
𝑄
+ 𝑟
𝐿𝑄
𝐼
𝑄
− 𝜇𝐼
𝑁
,

𝑑𝑅
𝐷

𝑑𝑡
= 𝛿
𝑁
𝐼
𝑁
+ 𝛿
𝑄
𝐼
𝑄
− 𝑏𝑅
𝐷
.

(9)

The population of humans who die either naturally or due
to other causes is represented by the variable 𝑅

𝑁
and keeps

track of all natural deaths, occurring at rate 𝜇, from all the
living population classes. This is a collection class. Another
collection class is the class of disposed Ebola-related cadavers,

disposed at rate 𝑏. These collection classes satisfy the equa-
tions

𝑑𝑅
𝑁

𝑑𝑡
= 𝜇𝐻
𝐿
,

𝑑𝐷
𝐷

𝑑𝑡
= 𝑏𝑅
𝐷
.

(10)

Putting all the equations together we have

𝑑𝑆

𝑑𝑡
= Π − 𝜆𝑆 + �̃�

3
𝛽
𝑁
𝑃
𝑁
+ �̃�
2
𝛼
𝑁
𝑆
𝑁
+ �̃�
6
𝛼
𝑄
𝑆
𝑄

+ �̃�
7
𝛽
𝑄
𝑃
𝑄
− 𝜇𝑆,

(11)

𝑑𝑆
𝑁

𝑑𝑡
= 𝜃
1
𝜆𝑆 − (𝛼

𝑁
+ 𝜇) 𝑆

𝑁
, (12)

𝑑𝑆
𝑄

𝑑𝑡
= �̃�
1
𝜆𝑆 − (𝛼

𝑄
+ 𝜇) 𝑆

𝑄
, (13)

𝑑𝑃
𝑁

𝑑𝑡
= 𝜃
2𝑎
𝛼
𝑁
𝑆
𝑁
− (𝛽
𝑁
+ 𝜇) 𝑃

𝑁
, (14)

𝑑𝑃
𝑄

𝑑𝑡
= 𝜃
2𝑏
𝛼
𝑁
𝑆
𝑁
+ 𝜃
6
𝛼
𝑄
𝑆
𝑄
− (𝛽
𝑄
+ 𝜇) 𝑃

𝑄
, (15)

𝑑𝐶
𝑁

𝑑𝑡
= 𝜃
3𝑎
𝛽
𝑁
𝑃
𝑁
− (𝑟
𝐸𝑁
+ 𝛾
𝑁
+ 𝜇)𝐶

𝑁
, (16)

𝑑𝐶
𝑄

𝑑𝑡
= 𝜃
3𝑏
𝛽
𝑁
𝑃
𝑁
+ 𝜃
7
𝛽
𝑄
𝑃
𝑄
− (𝑟
𝐸𝑄
+ 𝛾
𝑄
+ 𝜇)𝐶

𝑄
, (17)

𝑑𝐼
𝑁

𝑑𝑡
= 𝜃
4
𝛾
𝑁
𝐶
𝑁
− (𝑟
𝐿𝑁
+ 𝛿
𝑁
+ 𝜇) 𝐼

𝑁
, (18)

𝑑𝐼
𝑄

𝑑𝑡
= �̃�
4
𝛾
𝑁
𝐶
𝑁
+ 𝜎
𝑁
𝐼
𝑁
+ 𝛾
𝑄
𝐶
𝑄

− (𝑟
𝐿𝑄
+ 𝛿
𝑄
+ 𝜇) 𝐼

𝑄
,

(19)

𝑑𝑅
𝑅

𝑑𝑡
= 𝑟
𝐸𝑁
𝐶
𝑁
+ 𝑟
𝐿𝑁
𝐼
𝑁
+ 𝑟
𝐸𝑄
𝐶
𝑄
+ 𝑟
𝐿𝑄
𝐼
𝑄
− 𝜇𝑅
𝑅
, (20)

𝑑𝑅
𝐷

𝑑𝑡
= 𝛿
𝑁
𝐼
𝑁
+ 𝛿
𝑄
𝐼
𝑄
− 𝑏𝑅
𝐷
, (21)

𝑑𝑅
𝑁

𝑑𝑡
= 𝜇𝐻
𝐿

(22)

𝑑𝐷
𝐷

𝑑𝑡
= 𝑏𝑅
𝐷
, (23)

where �̃�
∗
= 1−𝜃

∗
and all other parameters and state variables

are as in Notations.
Suitable initial conditions are needed to completely spec-

ify the problem under consideration. We can, for example,
assume that we have a completely susceptible population, and
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a number of infectious persons are introduced into the
population at some point. We can, for example, have that

𝑆 (0) = 𝑆
0
,

𝐼
𝑁
(0) = 𝐼

0
,

𝑆
𝑁 (0) = 𝑆𝑄 (0) = 𝑃𝑁 (0) = 0,

𝑃
𝑄
(0) = 𝐶

𝑁
(0) = 𝐶

𝑄
(0) = 𝐼

𝑄
(0) = 𝑅

𝐷
(0) = 𝑅

𝑅
(0)

= 𝑅
𝑁
(0) = 𝐷

𝐷
(0) = 0.

(24)

Class 𝐷
𝐷
is used to keep count of all the dead that are

properly disposed of, class 𝑅
𝐷
is used to keep count of all

the deaths due to EVD, and class 𝑅
𝑁
is used to keep count of

the deaths due to causes other than EVD infection. The rate
of change equation for the two groups of total populations
is obtained by using (2) and (3) and adding up the relevant
equations from (11) to (23) to obtain

𝑑𝐻
𝐿

𝑑𝑡
= Π − 𝜇𝐻

𝐿
− 𝛿
𝑁
𝐼
𝑁
− 𝛿
𝑄
𝐼
𝑄
, (25)

𝑑𝐻

𝑑𝑡
= Π − 𝜇𝐻 − (𝑏 − 𝜇) 𝑅

𝐷
, (26)

where 𝐻
𝐿
is the total living population and 𝐻 is the aug-

mented total population adjusted to account for nondisposed
cadavers that are known to be very infectious. On the other
hand, if we keep count of all classes by adding up (11)–(23), the
total human population (living and dead) will be constant if
Π = 0. In what follows, we will use the classes 𝑅

𝐷
, 𝑅
𝑁
, and

𝐷
𝐷
, comprising classes of already dead persons, only as place

holders, and study the problem containing the living humans
and their possible interactions with cadavers of EVD victims
as often is the case in some cultures in Africa, and so we
cannot have a constant total population. Note that (26) can
also be written as 𝑑𝐻/𝑑𝑡 = Π − 𝜇𝐻

𝐿
− 𝑏𝑅
𝐷
.

2.2.7. Infectivity of Persons Infected with EVD. Ebola is a
highly infectious disease and person to person transmission
is possible whenever a susceptible person comes in contact
with bodily fluids from an individual infected with the Ebola
Virus. We therefore define effective contact here generally
to mean contact with these fluids. The level of infectivity
of an infected person usually increases with duration of
the infection and severity of symptoms and the cadavers
of EVD victims are the most infectious [23]. Thus we will
assume in this paper that probable persons who indeed are
infected with the Ebola Virus are the least infectious while
confirmed late symptomatic cases are very infectious and the
level of infectivity will culminate with that of the cadaver
of an EVD victim. While under quarantine, it is assumed
that contact between the persons in quarantine and the
susceptible individuals is minimal.Thus though the potential
infectivity of the corresponding class of persons in quarantine
increases with disease progression, their effective transmis-
sion to members of the public is small compared to that from
the nonquarantined class. It is therefore reasonable to assume
that any transmission from persons under quarantine will

affect mostly health care providers and use that branch of
the dynamics to study the effect of the transmission of the
infections to health care providers who are here considered
part of the total population. In what follows we do not
explicitly single out the infectivity of those in quarantine but
study general dynamics as derived by the current modelling
exercise.

3. Mathematical Analysis

3.1. Well-Posedness, Positivity, and Boundedness of Solution.
In this subsection we discuss important properties of the
model such as well-posedness, positivity, and boundedness of
the solutions.We start by definingwhat wemean by a realistic
solution.

Definition 1 (realistic solution). A solution of system (27) or
equivalently system comprising (11)–(21) is called realistic if
it is nonnegative and bounded.

It is evident that a solution satisfying Definition 1 is
physically realizable in the sense that its values can be
measured through data collection. For notational simplicity,
we use vector notation as follows: let x = (𝑆, 𝑆

𝑁
, 𝑆
𝑄
,

𝑃
𝑁
, 𝑃
𝑄
, 𝐶
𝑁
, 𝐶
𝑄
, 𝐼
𝑁
, 𝐼
𝑄
, 𝑅
𝑅
, 𝑅
𝐷
)
𝑇 be a column vector in R11

containing the 11 state variables, so that, in this nota-
tion, 𝑥

1
= 𝑆, 𝑥

2
= 𝑆
𝑁
, . . . , 𝑥

11
= 𝑅
𝐷
. Let f(x) =

(𝑓
1
(x), 𝑓
2
(x), . . . , 𝑓

11
(x))𝑇 be the vector valued function

defined inR11 so that in this notation 𝑓
1
(x) is the right-hand

side of the differential equation for first variable 𝑆,𝑓
2
(x) is the

right-hand side of the equation for the second variable 𝑥
2
=

𝑆
𝑁
, . . ., and 𝑓

11
(x) is the right side of the differential equation

for the 11th variable 𝑥
11
= 𝑅
𝐷
, and so is precisely system (11)–

(21) in that order with prototype initial conditions (24). We
then write the system in the form

dx
𝑑𝑡
= f (x) , x (0) = x

0
, (27)

where x : [0,∞) → R11 is a column vector of state variables
and f : R11 → R11 is the vector containing the right-
hand sides of each of the state variables as derived from
corresponding equations in (11)–(21). We can then have the
following result.

Lemma 2. The function f in (27) is Lipschitz continuous in x.

Proof. Since all the terms in the right-hand side are linear
polynomials or rational functions of nonvanishing polyno-
mial functions, and since the state variables, 𝑆, 𝑆

∗
, 𝑃
∗
, 𝐶
∗
,

𝐼
∗
, and 𝑅

∗
, are continuously differentiable functions of 𝑡, the

components of the vector valued function f of (27) are all
continuously differentiable. Further, let L(x, y; 𝜃) = {x+𝜃(y−
x) : 0 ≤ 𝜃 ≤ 1}. Then L(x, y; 𝜃) is a line segment that joins
points x to the point y as 𝜃 ranges on the interval [0, 1]. We
apply the mean value theorem to see that
f (y) − f (x)

∞
=

f (z; y − x)∞ ,

z ∈ L (x, y; 𝜃) , a mean value point,
(28)
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where f(z; y − x) is the directional derivative of the function
f at the mean value point z in the direction of the vector y−x.
But,


f (z; y − x)∞ =



11

∑

𝑘=1

(∇𝑓
𝑘 (z) ⋅ (y − x)) e𝑘

∞

≤



11

∑

𝑘=1

∇𝑓
𝑘 (z)
∞

y − x
∞
,

(29)

where e
𝑘
is the 𝑘th coordinate unit vector in R11

+
. It is now

a straightforward computation to verify that since R11
+

is a
convex set, and taking into consideration the nature of the
functions 𝑓

𝑖
, 𝑖 = 1, . . . , 11, all the partial derivatives are

bounded and so there exist𝑀 > 0 such that


11

∑

𝑘=1

∇𝑓
𝑘 (z)
∞

≤ 𝑀 ∀z ∈ L (x, y; 𝜃) ∈ R11
+
, (30)

and so there exist𝑀 > 0 such that
f (y) − f (x)

∞
≤ 𝑀

y − x
∞ (31)

and hence f is Lipschitz continuous.

Theorem 3 (uniqueness of solutions). The differential equa-
tion (27) has a unique solution.

Proof. By Lemma 2, the right-hand side of (27) is Lips-
chitzian; hence a unique solution exists by existence and
uniqueness theorem of Picard. See, for example, [24].

Theorem 4 (positivity). The region R11
+

wherein solutions
defined by (11)–(21) are defined is positively invariant under the
flow defined by that system.

Proof. We show that each trajectory of the system starting in
R11
+
will remain inR11

+
. Assume for a contradiction that there

exists a point 𝑡
1
∈ [0,∞) such that 𝑆(𝑡

1
) = 0, 𝑆(𝑡

1
) < 0

(where the prime denotes differentiationwith respect to time)
but for 0 < 𝑡 < 𝑡

1
, 𝑆(𝑡) > 0, and 𝑆

𝑁
(𝑡) > 0, 𝑆

𝑄
(𝑡) > 0,

𝑃
𝑁
(𝑡) > 0, 𝑃

𝑄
(𝑡) > 0, 𝐶

𝑁
(𝑡) > 0, 𝐶

𝑄
(𝑡) > 0, 𝐼

𝑁
(𝑡) > 0,

𝐼
𝑄
(𝑡) > 0, 𝑅

𝑅
(𝑡) > 0, and 𝑅

𝐷
(𝑡) > 0. So, at the point 𝑡 = 𝑡

1
,

𝑆(𝑡) is decreasing from the value zero in which case it will
go negative. If such an 𝑆 will satisfy the given differential
equation, then we have

𝑑𝑆

𝑑𝑡

𝑡=𝑡
1

= Π − 𝜆𝑆 (𝑡
1
) + (1 − 𝜃

3
) 𝛽
𝑁
𝑃
𝑁
(𝑡
1
)

+ (1 − 𝜃
2
) 𝛼
𝑁
𝑆
𝑁
(𝑡
1
) + (1 − 𝜃

6
) 𝛼
𝑄
𝑆
𝑄
(𝑡
1
)

+ (1 − 𝜃
7
) 𝛽
𝑄
𝑃
𝑄
(𝑡
1
) − 𝜇𝑆 (𝑡

1
)

= Π + (1 − 𝜃
3
) 𝛽
𝑁
𝑃
𝑁
(𝑡
1
)

+ (1 − 𝜃
2
) 𝛼
𝑁
𝑆
𝑁
(𝑡
1
) + (1 − 𝜃

6
) 𝛼
𝑄
𝑆
𝑄
(𝑡
1
)

+ (1 − 𝜃
7
) 𝛽
𝑄
𝑃
𝑄
(𝑡
1
) > 0

(32)

and so 𝑆(𝑡
1
) > 0 contradicting the assumption that 𝑆(𝑡

1
) <

0. So no such 𝑡
1
exist. The same argument can be made for all

the state variables. It is now a simple matter to verify, using
techniques as explained in [24], thatwheneverwe start system
(27), with nonnegative initial data in R11

+
, the solution will

remain nonnegative for all 𝑡 > 0 and that if x
0
= 0, the

solution will remain x = 0 ∀𝑡 > 0, and the region R11
+

is
indeed positively invariant.

The last two theorems have established the fact that, from
amathematical andphysical standpoint, the differential equa-
tion (27) is well-posed. We next show that the nonnegative
unique solutions postulated byTheorem 3 are indeed realistic
in the sense of Definition 1.

Theorem 5 (boundedness). The nonnegative solutions char-
acterized by Theorems 3 and 4 are bounded.

Proof. It suffices to prove that the total living population size
is bounded for all 𝑡 > 0. We show that the solutions lie in the
bounded region

Ω
𝐻
𝐿

= {𝐻
𝐿
(𝑡) : 0 ≤ 𝐻

𝐿
(𝑡) ≤

Π

𝜇
} ⊂ R

11

+
. (33)

From the definition of 𝐻
𝐿
given in (2), if 𝐻

𝐿
is bounded,

the rest of the state variables that add up to 𝐻
𝐿
will also be

bounded. From (25) we have

𝑑𝐻
𝐿

𝑑𝑡
= Π − 𝜇𝐻

𝐿
− 𝛿
𝑁
𝐼
𝑁
− 𝛿
𝑄
𝐼
𝑄
≤ Π − 𝜇𝐻

𝐿
⇒

𝐻
𝐿
(𝑡) ≤

Π

𝜇
+ (𝐻
𝐿
(0) −

Π

𝜇
) 𝑒
−𝜇𝑡
.

(34)

Thus, from (34), we see that, whatever the size of𝐻
𝐿
(0),𝐻

𝐿
(𝑡)

is bounded above by a quantity that converges to Π/𝜇 as 𝑡 →
∞. In particular, if 𝜇𝐻

𝐿
(0) < Π, then𝐻

𝐿
(𝑡) is bounded above

by Π/𝜇, and for all initial conditions

𝐻
𝐿
(𝑡) ≤ lim
𝑡→∞

sup(Π
𝜇
+ (𝐻
𝐿
(0) −

Π

𝜇
) 𝑒
−𝜇𝑡
) . (35)

Thus𝐻
𝐿
(𝑡) is nonnegative and bounded.

Remark 6. Starting from the premise that 𝐻
𝐿
(𝑡) ≥ 0 for

all 𝑡 > 0, Theorem 5 establishes boundedness for the total
living population and thus by extension verifies the positive
invariance of the positive octant in R11 as postulated by
Theorem 4, since each of the variables functions 𝑆, 𝑆

∗
, 𝑃
∗
,𝐶
∗
,

𝐼
∗
, and 𝑅

∗
, where ∗ ∈ {𝑁,𝑄, 𝑅}, is a subset of𝐻

𝐿
.

3.2. Reparameterisation and Nondimensionalisation. The
only physical dimension in our system is that of time. But
we have state variables which depend on the density of
humans and parameters which depend on the interactions
between the different classes of humans. A state variable or
parameter that measures the number of individuals of certain
type has dimension-like quantity associated with it [25]. To
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remove the dimension-like character on the parameters and
variables, we make the following change of variables:

𝑠 =
𝑆

𝑆0
,

𝑠
𝑛
=
𝑆
𝑁

𝑆
0

𝑁

,

𝑠
𝑞
=
𝑆
𝑄

𝑆
0

𝑄

,

𝑝
𝑛
=
𝑃
𝑁

𝑃
0

𝑁

,

𝑝
𝑞
=
𝑃
𝑄

𝑃
0

𝑄

,

𝑐
𝑛
=
𝐶
𝑁

𝐶
0

𝑁

,

𝑐
𝑞
=
𝐶
𝑄

𝐶
0

𝑄

,

ℎ =
𝐻

𝐻0
,

𝑖
𝑛
=
𝐼
𝑁

𝐼
0

𝑁

,

𝑖
𝑞
=
𝐼
𝑄

𝐼
0

𝑄

,

𝑟
𝑟
=
𝑅
𝑅

𝑅
0

𝑅

,

𝑟
𝑑
=
𝑅
𝐷

𝑅
0

𝐷

,

𝑟
𝑛
=
𝑅
𝑁

𝑅
0

𝑁

,

𝑑
𝐷
=
𝐷
𝐷

𝐷
0

𝐷

,

𝑡
∗
=
𝑡

𝑇0
,

ℎ
𝑙
=
𝐻
𝐿

𝐻
0

𝐿

,

(36)

where

𝑆
0
=
Π

𝜇
,

𝑆
0

𝑁
= 𝑆
0

𝑄
= 𝑆
0
,

𝑃
0

𝑁
=
𝜃
2𝑎
𝛼
𝑁
𝑆
0

𝑁

𝛽
𝑁
+ 𝜇
,

𝑃
0

𝑄
=
𝜃
2𝑏
𝛼
𝑁
𝑆
0

𝑁

𝛽
𝑄
+ 𝜇
,

𝐶
0

𝑁
=
𝜃
3𝑎
𝛽
𝑁
𝑃
0

𝑁

𝑟
𝐸𝑁
+ 𝛾
𝑁
+ 𝜇
,

𝐶
0

𝑄
=
𝜃
3𝑏
𝛽
𝑁
𝑃
0

𝑁

𝑟
𝐸𝑄
+ 𝛾
𝑄
+ 𝜇
,

𝐼
0

𝑁
=

𝜃
4
𝛾
𝑁
𝐶
0

𝑁

𝑟
𝐿𝑁
+ 𝛿
𝑁
+ 𝜇
,

𝐼
0

𝑄
=
(1 − 𝜃

4
) 𝛾
𝑁
𝐶
0

𝑁

𝑟
𝐿𝑄
+ 𝛿
𝑄
+ 𝜇
,

𝑅
0

𝑅
= 𝑟
𝐸𝑁
𝐶
0

𝑁
𝑇
0
,

𝑅
0

𝐷
=
𝛿
𝑁
𝐼
0

N
𝑏
,

𝑅
0

𝑁
= 𝜇𝑇
0
𝐻
0

𝐿
,

𝐷
0

𝐷
= 𝑏𝑇
0
𝑅
0

𝐷
,

𝐻
0
= 𝐻
0

𝐿
=
Π

𝜇
= 𝑆
0
,

𝑇
0
=
1

𝜇
.

(37)

We then define the dimensionless parameter groupings

𝜌
𝑛
=
𝜃
3
𝜌
𝑁
𝑃
0

𝑁

𝜇𝐻0
,

𝜌
𝑞
=

𝜃
7
𝜌
𝑄
𝑃
0

𝑄

𝜇𝐻0
,

𝜏
𝑛
=
𝜏
𝑁
𝐶
0

𝑁

𝜇𝐻0
,

𝜏
𝑞
=

𝜏
𝑄
𝐶
0

𝑄

𝜇𝐻0
,

𝜉
𝑛
=
𝜉
𝑁
𝐼
0

𝑁

𝜇𝐻0
,

𝜉
𝑞
=

𝜉
𝑄
𝐼
0

𝑄

𝜇𝐻0
,

𝑎
𝑑
=
𝑎
𝐷
𝑅
0

𝐷

𝜇𝐻0
,

𝛼
𝑛
= (𝛼
𝑁
+ 𝜇)𝑇

0
,

𝛼
𝑞
= (𝛼
𝑄
+ 𝜇)𝑇

0
,

𝛽
𝑛
= (𝛽
𝑁
+ 𝜇) 𝑇

0
,

𝛽
𝑞
= (𝛽
𝑄
+ 𝜇)𝑇

0
,
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𝜇
𝑑
= 𝑏𝑇
0
,

𝑏
1
=
(1 − 𝜃

3
) 𝛽
𝑁
𝑃
0

𝑁

𝜇𝑆0
,

𝑏
2
=
(1 − 𝜃

2
) 𝛼
𝑁
𝑆
0

𝑁

𝜇𝑆0
,

𝑏
3
=

(1 − 𝜃
6
) 𝛼
𝑄
𝑆
0

𝑄

𝜇𝑆0
,

𝑏
4
=

(1 − 𝜃
7
) 𝛽
𝑄
𝑃
0

𝑄

𝜇𝑆0
,

𝑏
5
=
𝛿
𝑁
𝐼
0

𝑁

𝜇𝐻0
,

𝑏
6
=

𝛿
𝑄
𝐼
0

𝑄

𝜇𝐻0
,

𝑏
8
=
(𝑏 − 𝜇) 𝑅

0

𝐷

𝜇𝐻0
,

𝑎
1
=

𝜃
6
𝛼
𝑄
𝑆
0

𝑄

𝜃
2𝑏
𝛼
𝑁
𝑆
0

𝑁

,

𝑎
2
=

𝜃
7
𝛽
𝑄
𝑃
0

𝑄

𝜃
3𝑏
𝛽
𝑁
𝑃
0

𝑁

,

𝑎
3
=

𝜎
𝑁
𝐼
0

𝑁

(𝑟
𝐿𝑄
+ 𝛿
𝑄
+ 𝜇) 𝐼

0

𝑄

,

𝑎
4
=

𝛾
𝑄
𝐶
0

𝑄

(𝑟
𝐿𝑄
+ 𝛿
𝑄
+ 𝜇) 𝐼

0

𝑄

,

𝑎
5
=
𝑟
𝐿𝑁
𝐼
0

𝑁

𝑟
𝐸𝑁
𝐶
0

𝑁

,

𝑎
6
=

𝑟
𝐸𝑄
𝐶
0

𝑄

𝑟
𝐸𝑁
𝐶
0

𝑁

,

𝑎
7
=

𝑟
𝐿𝑄
𝐼
0

𝑄

𝑟
𝐸𝑁
𝐶
0

𝑁

,

𝑎
8
=

𝛿
𝑄
𝐼
0

𝑄

𝛿
𝑁
𝐼
0

𝑁

,

𝛾
𝑛
= (𝑟
𝐸𝑁
+ 𝛾
𝑁
+ 𝜇) 𝑇

0
,

𝛾
𝑞
= (𝑟
𝐸𝑄
+ 𝛾
𝑄
+ 𝜇) 𝑇

0
,

𝛿
𝑞
= (𝑟
𝐿𝑄
+ 𝛿
𝑄
+ 𝜇) 𝑇

0
,

𝛿
𝑛
= (𝑟
𝐿𝑁
+ 𝛿
𝑁
+ 𝜇) 𝑇

0
.

(38)

The force of infection 𝜆 then takes the form

𝜆 = 𝜌
𝑛
(
𝑝
𝑛

ℎ
) + 𝜌
𝑞
(

𝑝
𝑞

ℎ
) + 𝜏
𝑛
(
𝑐
𝑛

ℎ
) + 𝜏
𝑞
(

𝑐
𝑞

ℎ
)

+ 𝜉
𝑛
(
𝑖
𝑛

ℎ
) + 𝜉
𝑞
(

𝑖
𝑞

ℎ
) + 𝑎
𝑑
(
𝑟
𝑑

ℎ
) .

(39)

This leads to the equivalent system of equations

𝑑𝑠

𝑑𝑡
= 1 − 𝜆𝑠 + 𝑏

1
𝑝
𝑛
+ 𝑏
2
𝑠
𝑛
+ 𝑏
3
𝑠
𝑞
+ 𝑏
4
𝑝
𝑞
− 𝑠, (40)

𝑑𝑠
𝑛

𝑑𝑡
= 𝜃
1
𝜆𝑠 − 𝛼

𝑛
𝑠
𝑛
, (41)

𝑑𝑠
𝑞

𝑑𝑡
= (1 − 𝜃

1
) 𝜆𝑠 − 𝛼

𝑞
𝑠
𝑞
, (42)

𝑑𝑝
𝑛

𝑑𝑡
= 𝛽
𝑛
(𝑠
𝑛
− 𝑝
𝑛
) , (43)

𝑑𝑝
𝑞

𝑑𝑡
= 𝛽
𝑞
(𝑠
𝑛
+ 𝑎
1
𝑠
𝑞
− 𝑝
𝑞
) , (44)

𝑑𝑐
𝑛

𝑑𝑡
= 𝛾
𝑛
(𝑝
𝑛
− 𝑐
𝑛
) , (45)

𝑑𝑐
𝑞

𝑑𝑡
= 𝛾
𝑞
(𝑝
𝑛
+ 𝑎
2
𝑝
𝑞
− 𝑐
𝑞
) , (46)

𝑑𝑖
𝑛

𝑑𝑡
= 𝛿
𝑛
(𝑐
𝑛
− 𝑖
𝑛
) , (47)

𝑑𝑖
𝑞

𝑑𝑡
= 𝛿
𝑞
(𝑐
𝑛
+ 𝑎
3
𝑖
𝑛
+ 𝑎
4
𝑐
𝑞
− 𝑖
𝑞
) , (48)

𝑑𝑟
𝑟

𝑑𝑡
= 𝑐
𝑛
+ 𝑎
5
𝑖
𝑛
+ 𝑎
6
𝑐
𝑞
+ 𝑎
7
𝑖
𝑞
− 𝑟
𝑟
, (49)

𝑑𝑟
𝑑

𝑑𝑡
= 𝜇
𝑑
(𝑖
𝑛
+ 𝑎
8
𝑖
𝑞
− 𝑟
𝑑
) , (50)

𝑑𝑟
𝑛

𝑑𝑡
= ℎ
𝑙
, (51)

𝑑𝑑
𝐷

𝑑𝑡
= 𝑑
𝐷
, (52)

and the total populations satisfy the scaled equation

𝑑ℎ
𝑙

𝑑𝑡
= 1 − ℎ

𝑙
− 𝑏
5
𝑖
𝑛
− 𝑏
6
𝑖
𝑞
, (53)

𝑑ℎ

𝑑𝑡
= 1 − ℎ − 𝑏

8
𝑟
𝑑
, (54)
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where 𝑏
8
> 0 if it is assumed that the rate of disposal of Ebola

Virus Disease victims, 𝑏, is larger than the natural human
death rate,𝜇.The scaled or dimensionless parameters are then
as follows:

𝜌
𝑛
=
𝜃
3
𝜃
2𝑎
𝜌
𝑁
𝛼
𝑁

(𝛽
𝑁
+ 𝜇) 𝜇

,

𝜌
𝑞
=
𝜃
7
𝜃
2𝑏
𝜌
𝑄
𝛼
𝑁

(𝛽
𝑄
+ 𝜇) 𝜇

,

𝜏
𝑛
=

𝜃
3𝑎
𝜃
2𝑎
𝜏
𝑁
𝛼
𝑁
𝛽
𝑁

(𝛽
𝑁
+ 𝜇) (𝑟

𝐸𝑁
+ 𝛾
𝑁
+ 𝜇) 𝜇

,

𝜏
𝑞
=

𝜃
3𝑏
𝜃
2𝑎
𝜏
𝑄
𝛼
𝑁
𝛽
𝑁

(𝛽
𝑁
+ 𝜇) (𝑟

𝐸𝑄
+ 𝛾
𝑄
+ 𝜇) 𝜇

,

𝜉
𝑛
=

𝜃
3𝑎
𝜃
2𝑎
𝜃
4
𝜉
𝑁
𝛾
𝑁
𝛽
𝑁
𝛼
𝑁

(𝛽
𝑁
+ 𝜇) (𝑟

𝐸𝑁
+ 𝛾
𝑁
+ 𝜇) (𝑟

𝐿𝑁
+ 𝛿
𝑁
+ 𝜇) 𝜇

,

𝜉
𝑞
=

𝜃
3𝑎
𝜃
2𝑎
(1 − 𝜃

4
) 𝜉
𝑄
𝛾
𝑁
𝛽
𝑁
𝛼
𝑁

(𝛽
𝑁
+ 𝜇) (𝑟

𝐸𝑁
+ 𝛾
𝑁
+ 𝜇) (𝑟

𝐿𝑄
+ 𝛿
𝑄
+ 𝜇) 𝜇

,

𝑎
𝑑
=

𝜃
2𝑎
𝜃
3𝑎
𝜃
4
𝛿
𝑁
𝛾
𝑁
𝛽
𝑁
𝛼
𝑁
𝑎
𝐷

(𝛽
𝑁
+ 𝜇) (𝑟

𝐸𝑁
+ 𝛾
𝑁
+ 𝜇) (𝑟

𝐿𝑁
+ 𝛿
𝑁
+ 𝜇) 𝑏𝜇

,

𝑏
1
=
(1 − 𝜃

3
) 𝜃
2𝑎
𝛽
𝑁
𝛼
𝑁

(𝛽
𝑁
+ 𝜇) 𝜇

,

𝑏
2
=
(1 − 𝜃

2
) 𝛼
𝑁

𝜇
,

𝑏
3
=
(1 − 𝜃

6
) 𝛼
𝑄

𝜇
,

𝑏
4
=
(1 − 𝜃

7
) 𝜃
2𝑏
𝛽
𝑄
𝛼
𝑁

(𝛽
𝑄
+ 𝜇) 𝜇

,

𝑏
5
=

𝜃
4
𝜃
2𝑎
𝜃
3𝑎
𝛿
𝑁
𝛾
𝑁
𝛽
𝑁
𝛼
𝑁

(𝑟
𝐿𝑁
+ 𝛿
𝑁
+ 𝜇) (𝑟

𝐸𝑁
+ 𝛾
𝑁
+ 𝜇) (𝛽

𝑁
+ 𝜇) 𝜇

,

𝑏
6
=

(1 − 𝜃
4
) 𝜃
2𝑎
𝜃
3𝑎
𝛿
𝑄
𝛾
𝑁
𝛽
𝑁
𝛼
𝑁

(𝑟
𝐿𝑄
+ 𝛿
𝑄
+ 𝜇) (𝑟

𝐸𝑁
+ 𝛾
𝑁
+ 𝜇) (𝛽

𝑁
+ 𝜇) 𝜇

,

𝑏
8
=

(𝑏 − 𝜇) 𝜃
4
𝜃
2𝑎
𝜃
3𝑎
𝛼
𝑁
𝛽
𝑁
𝛾
𝑁
𝛿
𝑁

𝑏𝜇 (𝛽
𝑁
+ 𝜇) (𝑟

𝐸𝑁
+ 𝛾
𝑁
+ 𝜇) (𝑟

𝐿𝑁
+ 𝛿
𝑁
+ 𝜇)
,

𝛿
𝑛
=
𝑟
𝐿𝑁
+ 𝛿
𝑁
+ 𝜇

𝜇
,

𝛼
𝑛
=
𝛼
𝑁
+ 𝜇

𝜇
,

𝛼
𝑞
=
𝛼
𝑄
+ 𝜇

𝜇
,

𝛽
𝑛
=
𝛽
𝑁
+ 𝜇

𝜇
,

𝛽
𝑞
=
𝛽
𝑄
+ 𝜇

𝜇
,

𝛾
𝑛
=
𝑟
𝐸𝑁
+ 𝛾
𝑁
+ 𝜇

𝜇
,

𝛾
𝑞
=
𝑟
𝐸𝑄
+ 𝛾
𝑄
+ 𝜇

𝜇
,

𝛿
𝑞
=
𝑟
𝐿𝑄
+ 𝛿
𝑄
+ 𝜇

𝜇
,

𝑎
1
=
𝜃
6
𝛼
𝑄

𝜃
2𝑏
𝛼
𝑁

,

𝑎
2
=
𝜃
7
𝜃
2𝑏
𝛽
𝑄
(𝛽
𝑁
+ 𝜇)

𝜃
2𝑎
𝜃
3𝑏
(𝛽
𝑄
+ 𝜇) 𝛽

𝑁

,

𝑎
3
=

𝜃
4
𝜎
𝑁

(1 − 𝜃
4
) (𝑟
𝐿𝑁
+ 𝛿
𝑁
+ 𝜇)
,

𝑎
4
=

𝜃
3𝑏
𝛾
𝑄
(𝑟
𝐸𝑁
+ 𝛾
𝑁
+ 𝜇)

(1 − 𝜃
4
) 𝜃
3𝑎
𝛾
𝑁
(𝑟
𝐸𝑄
+ 𝛾
𝑄
+ 𝜇)
,

𝑎
5
=

𝑟
𝐿𝑁
𝜃
4
𝛾
𝑁

𝑟
𝐸𝑁
(𝑟
𝐿𝑁
+ 𝛿
𝑁
+ 𝜇)
,

𝜇
𝑑
=
𝑏

𝜇
,

𝑎
6
=
𝜃
3𝑏
𝑟
𝐸𝑄
(𝑟
𝐸𝑁
+ 𝛾
𝑁
+ 𝜇)

𝜃
3𝑎
𝑟
𝐸𝑁
(𝑟
𝐸𝑄
+ 𝛾
𝑄
+ 𝜇)
,

𝑎
7
=
𝑟
𝐿𝑄
(1 − 𝜃

4
) 𝛾
𝑁

𝑟
𝐸𝑁
(𝑟
𝐿𝑄
+ 𝛿
𝑄
+ 𝜇)
,

𝑎
8
=
(1 − 𝜃

4
) 𝛿
𝑄
(𝑟
𝐿𝑁
+ 𝛿
𝑁
+ 𝜇)

𝜃
4
𝛿
𝑁
(𝑟
𝐿𝑄
+ 𝛿
𝑄
+ 𝜇)

.

(55)

3.3.The Steady State Solutions andLinear Stability. Thesteady
state of the system is obtained by setting the right-hand side of
the scaled system to zero and solving for the scalar equations.
Let x∗ = (𝑠∗, 𝑠∗

𝑛
, 𝑠
∗

𝑞
, 𝑝
∗

𝑛
, 𝑝
∗

𝑞
, 𝑐
∗

𝑛
, 𝑐
∗

𝑞
, 𝑖
∗

𝑛
, 𝑖
∗

𝑞
, 𝑟
∗

𝑟
, 𝑟
∗

𝑑
, ℎ
∗
) be a steady

state solution of the system.Then, (43), (45), and (47) indicate
that

𝑠
∗

𝑛
= 𝑝
∗

𝑛
= 𝑐
∗

𝑛
= 𝑖
∗

𝑛
(56)
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andwe can use any of these as a parameter to derive the values
of the other steady state variables.We use the variables𝑝∗

𝑛
and

𝑠
∗

𝑞
as parameters to obtain the expressions

𝑝
∗

𝑞
(𝑝
∗

𝑛
, 𝑠
∗

𝑞
) = 𝑝
∗

𝑛
+ 𝑎
1
𝑠
∗

𝑞
,

𝑐
∗

𝑞
(𝑝
∗

𝑛
, 𝑠
∗

𝑞
) = 𝐴

1
𝑝
∗

𝑛
+ 𝐴
2
𝑠
∗

𝑞
,

𝑖
∗

𝑞
(𝑝
∗

𝑛
, 𝑠
∗

𝑞
) = 𝐴

3
𝑝
∗

𝑛
+ 𝐴
4
𝑠
∗

𝑞
,

𝑟
∗

𝑟
(𝑝
∗

𝑛
, 𝑠
∗

𝑞
) = 𝐴

5
𝑝
∗

𝑛
+ 𝐴
6
𝑠
∗

𝑞
,

𝑟
∗

𝑑
(𝑝
∗

𝑛
, 𝑠
∗

𝑞
) = 𝐴

7
𝑝
∗

𝑛
+ 𝐴
8
𝑠
∗

𝑞
,

ℎ
∗
(𝑝
∗

𝑛
, 𝑠
∗

𝑞
) = 1 − 𝐵

1
𝑝
∗

𝑛
− 𝐵
2
𝑠
∗

𝑞
,

𝑠
∗
(𝑝
∗

𝑛
, 𝑠
∗

𝑞
) = 1 − 𝐵

3
𝑝
∗

𝑛
− 𝐵
4
𝑠
∗

𝑞
,

ℎ
∗

𝑙
(𝑝
∗

𝑛
, 𝑠
∗

𝑞
) = 1 − (𝑏

5
+ 𝑏
6
𝐴
3
) 𝑝
∗

𝑛
− 𝑏
6
𝐴
4
𝑠
∗

𝑞
,

(57)

where

𝐴
1
= 1 + 𝑎

2
,

𝐴
2
= 𝑎
1
𝑎
2
,

𝐴
3
= 1 + 𝑎

3
+ 𝑎
4
𝐴
1
,

𝐴
4
= 𝑎
4
𝐴
2
,

𝐴
5
= 1 + 𝑎

5
+ 𝑎
6
𝐴
1
+ 𝑎
7
𝐴
3
,

𝐴
6
= 𝑎
6
𝐴
2
+ 𝑎
7
𝐴
4
,

𝐴
7
= 1 + 𝑎

8
𝐴
3
,

𝐴
8
= 𝑎
8
𝐴
4
,

𝐵
1
= 𝑏
8
𝐴
7
,

𝐵
2
= 𝑏
8
𝐴
8
,

𝐵
3
= 𝛼
𝑛
− 𝑏
1
− 𝑏
2
− 𝑏
4
,

𝐵
4
= 𝛼
𝑞
− 𝑏
3
− 𝑏
4
𝑎
1
.

(58)

Here the solution for the scaled total living (ℎ
𝑙
) and scaled

living and Ebola-deceased (ℎ) populations is, respectively,
obtained by equating the right-hand sides of (53) and (54) to
zero, while that for 𝑠∗ is obtained by adding up (40), (41), and

(42). It is easy to verify from reparameterisation (38) that the
parameter groupings 𝐵

3
and 𝐵

4
are both nonnegative. In fact,

𝐵
3
= 1

+
𝛼
𝑁

𝜇
(
𝛽
𝑁
𝜃
2𝑎
(𝜃
3
− 1)

𝛽
𝑁
+ 𝜇

+
𝛽
𝑄
𝜃
2𝑏
(𝜃
7
− 1)

𝛽
𝑄
+ 𝜇

+ 𝜃
2
)

> 0 since 𝜃
2
= 𝜃
2𝑎
+ 𝜃
2𝑏
,

𝐵
4
=
𝛼
𝑄
𝜃
6
(𝛽
𝑄
𝜃
7
+ 𝜇) + 𝜇 (𝛽

𝑄
+ 𝜇)

𝜇 (𝛽
𝑄
+ 𝜇)

> 0,

(59)

showing that 𝐵
3
> 0 and 𝐵

4
> 0.

To obtain a value for𝑝∗
𝑛
and 𝑠∗
𝑞
, we substitute all computed

steady state values, (56) and (57), into (41) and (42). The
expression for 𝜆∗𝑠∗ in terms of 𝑝∗

𝑛
and 𝑠∗
𝑞
is obtained from

(39). Performing the aforementioned procedures leads to the
two equations

𝜃
1
(𝐵
5
𝑝
∗

𝑛
+ 𝐵
6
𝑠
∗

𝑞
) (1 − 𝐵

3
𝑝
∗

𝑛
− 𝐵
4
𝑠
∗

𝑞
)

= 𝛼
𝑛
𝑝
∗

𝑛
(1 − 𝐵

1
𝑝
∗

𝑛
− 𝐵
2
𝑠
∗

𝑞
) ,

(60)

(1 − 𝜃
1
) (𝐵
5
𝑝
∗

𝑛
+ 𝐵
6
𝑠
∗

𝑞
) (1 − 𝐵

3
𝑝
∗

𝑛
− 𝐵
4
𝑠
∗

𝑞
)

= 𝛼
𝑞
𝑠
∗

𝑞
(1 − 𝐵

1
𝑝
∗

𝑛
− 𝐵
2
𝑠
∗

𝑞
) ,

(61)

where

𝐵
5
= 𝜌
𝑛
+ 𝜌
𝑞
+ 𝜏
𝑛
+ 𝜏
𝑞
𝐴
1
+ 𝜉
𝑛
+ 𝜉
𝑞
𝐴
3
+ 𝑎
𝑑
𝐴
7
,

𝐵
6
= 𝜌
𝑞
𝑎
1
+ 𝜏
𝑞
𝐴
2
+ 𝜉
𝑞
𝐴
4
+ 𝑎
𝑑
𝐴
8
.

(62)

Next, we solve (60) and (61) simultaneously, which clearly
differ in some of their coefficients, to obtain the expressions
for 𝑝∗
𝑛
and 𝑠∗
𝑞
. Quickly observe that the two equations may be

reduced to one such that

(1 − 𝐵
1
𝑝
∗

𝑛
− 𝐵
2
𝑠
∗

𝑞
) (𝛼
𝑛
𝑝
∗

𝑛
(1 − 𝜃

1
) − 𝛼
𝑞
𝑠
∗

𝑞
𝜃
1
) = 0. (63)

Two possibilities arise: either (i) 1 − 𝐵
1
𝑝
∗

𝑛
− 𝐵
2
𝑠
∗

𝑞
= 0 or (ii)

𝛼
𝑛
𝑝
∗

𝑛
(1 − 𝜃

1
) − 𝛼
𝑞
𝑠
∗

𝑞
𝜃
1
= 0. The first condition leads to the

system

1 − 𝐵
3
𝑝
∗

𝑛
− 𝐵
4
𝑠
∗

𝑞
= 0,

1 − 𝐵
1
𝑝
∗

𝑛
− 𝐵
2
𝑠
∗

𝑞
= 0.

(64)

However, the two equations are equivalent to ℎ∗ = 0 and
𝑠
∗
= 0 (see (57)), which are unrealistic, based on our constant

population recruitment model. Hence, we only consider the
second possibility, which yields the relation

𝑝
∗

𝑛
= (

𝛼
𝑞
𝜃
1

𝛼
𝑛
(1 − 𝜃

1
)
) 𝑠
∗

𝑞
, (65)



Computational and Mathematical Methods in Medicine 13

so that substituting (65) into (60) yields

𝑠
∗

𝑞
= 0,

or 𝑠∗
𝑞
=
𝐵
7

𝐵
8

=
(1 − 𝜃

1
) 𝛼
𝑛
(𝑅
0
− 1)

(𝜃
1
𝛼
𝑞
𝐵
1
+ (1 − 𝜃

1
) 𝛼
𝑛
𝐵
2
) (R − 1)

= 𝑥 (
𝑅
0
− 1

R − 1
) ,

(66)

where

𝐵
7
= 𝛼
𝑞
𝛼
𝑛
(1 − 𝜃

1
) ((

𝜃
1
𝐵
5

𝛼
𝑛

+
(1 − 𝜃

1
) 𝐵
6

𝛼
𝑞

) − 1)

= 𝛼
𝑞
𝛼
𝑛
(1 − 𝜃

1
) (𝑅
0
− 1) ,

𝐵
8
= 𝛼
𝑞
[(
𝜃
1
𝐵
5

𝛼
𝑛

+
(1 − 𝜃

1
) 𝐵
6

𝛼
𝑞

)

⋅ (𝛼
𝑞
𝜃
1
𝐵
3
+ 𝛼
𝑛
(1 − 𝜃

1
) 𝐵
4
)

− (𝜃
1
𝐵
1
𝛼
𝑞
+ 𝛼
𝑛
(1 − 𝜃

1
) 𝐵
2
)] = 𝛼

𝑞
(𝜃
1
𝐵
1
𝛼
𝑞

+ 𝛼
𝑛
(1 − 𝜃

1
) 𝐵
2
)((

𝜃
1
𝐵
5

𝛼
𝑛

+
(1 − 𝜃

1
) 𝐵
6

𝛼
𝑞

)

⋅ (

𝛼
𝑞
𝜃
1
𝐵
3
+ 𝛼
𝑛
(1 − 𝜃

1
) 𝐵
4

𝜃
1
𝐵
1
𝛼
𝑞
+ 𝛼
𝑛
(1 − 𝜃

1
) 𝐵
2

) − 1) = 𝛼
𝑞
(𝜃
1
𝐵
1
𝛼
𝑞

+ 𝛼
𝑛
(1 − 𝜃

1
) 𝐵
2
) (𝑅
0
𝑧 − 1) ,

(67)

with

𝑥 =
(1 − 𝜃

1
) 𝛼
𝑛

(𝜃
1
𝛼
𝑞
𝐵
1
+ (1 − 𝜃

1
) 𝛼
𝑛
𝐵
2
)

,

𝑦 =

𝜃
1
𝛼
𝑞
𝑥

(1 − 𝜃
1
) 𝛼
𝑛

,

𝑧 =

(𝜃
1
𝛼
𝑞
𝐵
3
+ (1 − 𝜃

1
) 𝛼
𝑛
𝐵
4
)

𝜃
1
𝛼
𝑞
𝐵
1
+ (1 − 𝜃

1
) 𝛼
𝑛
𝐵
2

,

(68)

𝑅
0
=
𝜃
1
𝐵
5

𝛼
𝑛

+
(1 − 𝜃

1
) 𝐵
6

𝛼
𝑞

,

R =
𝑅
0
(𝜃
1
𝛼
𝑞
𝐵
3
+ (1 − 𝜃

1
) 𝛼
𝑛
𝐵
4
)

𝜃
1
𝛼
𝑞
𝐵
1
+ (1 − 𝜃

1
) 𝛼
𝑛
𝐵
2

= 𝑧𝑅
0
.

(69)

Remark 7. It can be shown that 𝐵
2
< 𝐵
4
. In fact,

𝐵
2
= 𝑏
8
𝑎
8
𝑎
4
𝑎
1
𝑎
2
=
𝜃
6
𝛼
𝑄

𝜇

𝜃
7
𝛽
𝑄

(𝛽
𝑄
+ 𝜇)

((1 −
𝜇

𝑏
)

⋅
𝛿
𝑄

(𝑟
𝐿𝑄
+ 𝛿
𝑄
+ 𝜇)

𝛾
𝑄

(𝑟
𝐸𝑄
+ 𝛾
𝑄
+ 𝜇)
) <

𝜃
6
𝛼
𝑄

𝜇

⋅
𝜃
7
𝛽
𝑄

(𝛽
𝑄
+ 𝜇)

<
𝜃
6
𝛼
𝑄

𝜇

(𝜃
7
𝛽
𝑄
+ 𝜇)

(𝛽
𝑄
+ 𝜇)

+ 1 = 𝐵
4
.

(70)

Thus, if (1 − 𝜃
1
)𝛼
𝑛
(𝐵
4
− 𝐵
2
) > 𝜃
1
𝛼
𝑞
(𝐵
1
− 𝐵
3
), then 𝑧 > 1.

This will hold if 𝐵
3
> 𝐵
1
. In the case where 𝐵

3
< 𝐵
1
, we will

require that𝐵
4
−𝐵
2
be greater than (𝜃

1
𝛼
𝑞
/(1−𝜃

1
)𝛼
𝑛
)(𝐵
1
−𝐵
3
).

We identify 𝑅
0
as the unique threshold parameter of the

system as follows.

Lemma 8. The parameter 𝑅
0
defined in (69) is the unique

threshold parameter of the system whenever 𝑧 > 1.

Proof. If 𝑧 > 1, thenR = 𝑧𝑅
0
> 1 whenever 𝑅

0
> 1 and the

existence or nonexistence of a realistic solution of the form of
(66) is determined solely by the size of 𝑅

0
.

The rest of the steady states are then obtained by using
these values for 𝑝∗

𝑛
and 𝑠∗
𝑞
given by (66) in (65) and (57) to

obtain the following:

𝑠
∗

𝑞
= 𝑥(

𝑅
0
− 1

R − 1
) ,

𝑖
∗

𝑛
= 𝑐
∗

𝑛
= 𝑠
∗

𝑛
= 𝑝
∗

𝑛
= 𝑦(

𝑅
0
− 1

R − 1
) ,

𝑝
∗

𝑞
= (𝑦 + 𝑎

1
𝑥) (
𝑅
0
− 1

R − 1
) ,

𝑐
∗

𝑞
= (𝐴
1
𝑦 + 𝐴

2
𝑥) (
𝑅
0
− 1

R − 1
) ,

𝑖
∗

𝑞
= (𝐴
3
𝑦 + 𝐴

4
𝑥) (
𝑅
0
− 1

R − 1
) ,

𝑟
∗

𝑟
= (𝐴
5
𝑦 + 𝐴

6
𝑥) (
𝑅
0
− 1

R − 1
) ,

𝑟
∗

𝑑
= (𝐴
7
𝑦 + 𝐴

8
𝑥) (
𝑅
0
− 1

R − 1
) ,

𝑠
∗
= 1 − (𝐵

3
𝑦 + 𝐵
4
𝑥) (
𝑅
0
− 1

R − 1
) ,

ℎ
∗
= 1 − (𝐵

1
𝑦 + 𝐵
2
𝑥) (
𝑅
0
− 1

R − 1
) ,

(71)

where 𝑥, 𝑦, and 𝑧 are as defined in (68). We have proved the
following result.

Theorem 9 (on the existence of equilibrium solutions).
System (40)–(52) has at least two equilibrium
solutions: the disease-free equilibrium x∗ = 𝐸

𝑑𝑓𝑒
=

(1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1) and an endemic equilibrium
x∗ = 𝐸

𝑒𝑒
= (𝑠
∗
, 𝑠
∗

𝑛
, 𝑠
∗

𝑞
, 𝑝
∗

𝑛
, 𝑝
∗

𝑞
, 𝑐
∗

𝑛
, 𝑐
∗

𝑞
, 𝑖
∗

𝑛
, 𝑖
∗

𝑞
, 𝑟
∗

𝑟
, 𝑟
∗

𝑑
, ℎ
∗
). The

endemic equilibrium, 𝐸
𝑒𝑒
, exists and is realistic only when

the threshold parameters 𝑅
0
and R, given by (69), are of

appropriate magnitude.

The stability of the steady states is governed by the sign of
the eigenvalues of the linearizing matrix near the steady state
solutions. If 𝐽(x∗) is the Jacobianmatrix at the steady state x∗,
then we have
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𝐽dfe =

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

−1 𝑏
2
𝑏
3
(𝑏
1
− 𝜌
𝑛
) (𝑏
4
− 𝜌
𝑞
) −𝜏
𝑛
−𝜏
𝑞
−𝜉
𝑛
−𝜉
𝑞
0 −𝑎

𝑑
0

0 −𝛼
𝑛
0 𝜃

1
𝜌
𝑛

𝜃
1
𝜌
𝑞

𝜃
1
𝜏
𝑛
𝜃
1
𝜏
𝑞
𝜃
1
𝜉
𝑛
𝜃
1
𝜉
𝑞
0 𝑎
𝑑
𝜃
1
0

0 0 −𝛼
𝑞

𝜃
1
𝜌
𝑛

𝜃
1
𝜌
𝑞

𝜃
1
𝜏
𝑛
𝜃
1
𝜏
𝑞
𝜃
1
𝜉
𝑛
𝜃
1
𝜉
𝑞
0 𝑎
𝑑
𝜃
1
0

0 𝛽
𝑛

0 −𝛽
𝑛

0 0 0 0 0 0 0 0

0 𝛽
𝑞
𝑎
1
𝛽
𝑞

0 −𝛽
𝑞

0 0 0 0 0 0 0

0 0 0 𝛾
𝑛

0 −𝛾
𝑛
0 0 0 0 0 0

0 0 0 𝛾
𝑞

𝑎
2
𝛾
𝑞

0 −𝛾
𝑞
0 0 0 0 0

0 0 0 0 0 𝛿
𝑛

0 −𝛿
𝑛
0 0 0 0

0 0 0 0 0 𝛿
𝑞
𝑎
4
𝛿
𝑞
𝑎
3
𝛿
𝑞
−𝛿
𝑞
0 0 0

0 0 0 0 0 1 𝑎
6
𝑎
5

𝑎
7
−1 0 0

0 0 0 0 0 0 0 𝜇
𝑑
𝜇
𝑑
𝑎
8
0 −𝜇

𝑑
0

0 0 0 0 0 0 0 0 0 0 −𝑏
8
−1

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

, (72)

where 𝜃
1
= 1 − 𝜃

1
. Thus if 𝜁 is an eigenvalue of the linearized

system at the disease-free state, then 𝜁 is obtained by the
solvability condition

𝑃 (𝜁) =
𝐽dfe − 𝜁I

 = (𝜁 + 1)
3
𝑃
9
(𝜁) = 0, (73)

an equation involving a polynomial of degree 12 in 𝜁, where
𝑃
9
(𝜁) is a polynomial of degree 9 in 𝜁, given by

𝑃
9 (𝜁) =



−𝛼
𝑛
− 𝜁 0 𝜃

1
𝜌
𝑛

𝜃
1
𝜌
𝑞

𝜃
1
𝜏
𝑛

𝜃
1
𝜏
𝑞

𝜃
1
𝜉
𝑛

𝜃
1
𝜉
𝑞

𝑎
𝑑
𝜃
1

0 −𝛼
𝑞
− 𝜁 𝜃

1
𝜌
𝑛

𝜃
1
𝜌
𝑞

𝜃
1
𝜏
𝑛

𝜃
1
𝜏
𝑞

𝜃
1
𝜉
𝑛

𝜃
1
𝜉
𝑞

𝑎
𝑑
𝜃
1

𝛽
𝑛

0 −𝛽
𝑛
− 𝜁 0 0 0 0 0 0

𝛽
𝑞

𝑎
1
𝛽
𝑞

0 −𝛽
𝑞
− 𝜁 0 0 0 0 0

0 0 𝛾
𝑛

0 −𝛾
𝑛
− 𝜁 0 0 0 0

0 0 𝛾
𝑞

𝑎
2
𝛾
𝑞

0 −𝛾
𝑞
− 𝜁 0 0 0

0 0 0 0 𝛿
𝑛

0 −𝛿
𝑛
− 𝜁 0 0

0 0 0 0 𝛿
𝑞

𝑎
4
𝛿
𝑞

𝑎
3
𝛿
𝑞
−𝛿
𝑞
− 𝜁 0

0 0 0 0 0 0 𝜇
𝑑

𝜇
𝑑
𝑎
8
−𝜇
𝑑
− 𝜁



. (74)

Now, all we need to know at this stage is whether there is
solution of (73) for 𝜁 with positive real part which will then
indicate the existence of unstable perturbations in the linear
regime. The coefficients of polynomial (73) can give us vital
information about the stability or instability of the disease-
free equilibrium. For example, by Descartes’ rule of signs,
a sign change in the sequence of coefficients indicates the
presence of a positive real root which in the linear regime
signifies the presence of exponentially growing perturbations.
We can write polynomial equation (73) in the form

𝑃 (𝜁) = (𝜁 + 1)
3

9

∑

𝑘=0

𝑐
𝑖
𝜁
𝑖
, (75)

where
𝑐
9
= 1,

𝑐
8
= 𝛼
𝑛
+ 𝛼
𝑞
+ 𝛽
𝑛
+ 𝛽
𝑞
+ 𝛾
𝑛
+ 𝛾
𝑞
+ 𝛿
𝑛
+ 𝛿
𝑞
+ 𝜇
𝑑
,

.

.

.

𝑐
0
= 𝛽
𝑛
𝛽
𝑞
𝛾
𝑛
𝛾
𝑞
𝛿
𝑛
𝛿
𝑞
𝜇
𝑑
𝛼
𝑛
𝛼
𝑞
{1 −

𝜃
1
𝐵
5

𝛼
𝑛

−
(1 − 𝜃

1
) 𝐵
6

𝛼
𝑞

}

= 𝛽
𝑛
𝛽
𝑞
𝛾
𝑛
𝛾
𝑞
𝛿
𝑛
𝛿
𝑞
𝜇
𝑑
𝛼
𝑛
𝛼
𝑞
(1 − 𝑅

0
) ,

(76)

and we can see that 𝑐
0
changes sign from positive to negative

when 𝑅
0
increases from values of 𝑅

0
< 1 through 𝑅

0
= 1 to

values of𝑅
0
> 1 indicating a change in stability of the disease-

free equilibrium as 𝑅
0
increases from unity.
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3.4. The Basic Reproduction Number. A threshold parameter
that is of essential importance to infectious disease trans-
mission is the basic reproduction number denoted by 𝑅

0
. 𝑅
0

measures the average number of secondary clinical cases of
infection generated in an absolutely susceptible population
by a single infectious individual throughout the period
within which the individual is infectious [26–29]. Generally,
the disease eventually disappears from the community if
𝑅
0
< 1 (and in some situations there is the occurrence

of backward bifurcation) and may possibly establish itself
within the community if 𝑅

0
> 1. The critical case 𝑅

0
= 1

represents the situation in which the disease reproduces itself
thereby leaving the community with a similar number of
infection cases at any time. The definition of 𝑅

0
specifically

requires that initially everybody but the infectious individual
in the population be susceptible. Thus, this definition breaks
down within a population in which some of the individ-
uals are already infected or immune to the disease under
consideration. In such a case, the notion of reproduction
numberR becomes useful. Unlike 𝑅

0
which is fixed,Rmay

vary considerably with disease progression. However, R is
bounded from above by 𝑅

0
and it is computed at different

points depending on the number of infected or immune cases
in the population.

One way of calculating 𝑅
0
is to determine a threshold

condition for which endemic steady state solutions to the
system under study exist (as we did to derive (69)) or
for which the disease-free steady state is unstable. Another
method is the next-generation approach where 𝑅

0
is the

spectral radius of the next-generation matrix [26]. Using the
next-generation approach, we identify all state variables for
the infection process, 𝑝

𝑛
, 𝑝
𝑞
, 𝑐
𝑛
, 𝑐
𝑞
, 𝑖
𝑛
, 𝑖
𝑞
, 𝑟
𝑟
, 𝑟
𝑑
, and ℎ. The

transitions from 𝑠
𝑛
, 𝑠
𝑞
to 𝑝
𝑛
, 𝑝
𝑞
are not considered new

infections but rather a progression of the infected individuals
through the different stages of disease compartments. Hence,
we identify terms representing new infections from the above
equations and rewrite the system as the difference of two
vectors F̃ and Ṽ, where F̃ consists of all new infections and
Ṽ consists of the remaining terms or transitions between
states. That is, we set ẋ = F̃ − Ṽ, where x is the vector
of state variables corresponding to new infections: x =

(𝑠, 𝑠
𝑛
, 𝑠
𝑞
, 𝑝
𝑛
, 𝑝
𝑞
, 𝑐
𝑛
, 𝑐
𝑞
, 𝑖
𝑛
, 𝑖
𝑞
, 𝑟
𝑟
, 𝑟
𝑑
, ℎ)
𝑇. This gives rise to

F̃ =

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

0

𝜃
1
𝜆𝑠

(1 − 𝜃
1
) 𝜆𝑠

0

0

0

0

0

0

0

0

0

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

,

Ṽ =

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

−1 + 𝜆𝑠 − 𝑏
1
𝑝
𝑛
− 𝑏
2
𝑠
𝑛
− 𝑏
3
𝑠
𝑞
− 𝑏
4
𝑝
𝑞
+ 𝑠

𝛼
𝑛
𝑠
𝑛

𝛼
𝑞
𝑠
𝑞

𝛽
𝑛
(−𝑠
𝑛
+ 𝑝
𝑛
)

𝛽
𝑞
(−𝑠
𝑛
− 𝑎
1
𝑠
𝑞
+ 𝑝
𝑞
)

𝛾
𝑛
(−𝑝
𝑛
+ 𝑐
𝑛
)

𝛾
𝑞
(−𝑝
𝑛
− 𝑎
2
𝑝
𝑞
+ 𝑐
𝑞
)

𝛿
𝑛
(−𝑐
𝑛
+ 𝑖
𝑛
)

𝛿
𝑞
(−𝑐
𝑛
− 𝑎
3
𝑖
𝑛
− 𝑎
4
𝑐
𝑞
+ 𝑖
𝑞
)

−𝑐
𝑛
− 𝑎
5
𝑖
𝑛
− 𝑎
6
𝑐
𝑞
− 𝑎
7
𝑖
𝑞
+ 𝑟
𝑟

−𝜇
𝑑
𝑖
𝑛
− 𝜇
𝑑
𝑎
8
𝑖
𝑞
+ 𝜇
𝑑
𝑟
𝑑

−1 + ℎ + 𝑏
8
𝑟
𝑑

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

,

(77)

where the force of infection 𝜆 is given by (39). To obtain the
next-generation operator, 𝐹𝑉−1, we must calculate (𝐹)

𝑖𝑗
=

𝜕F̃
𝑖
/𝜕𝑥
𝑗
and (𝑉)

𝑖𝑗
= 𝜕Ṽ

𝑖
/𝜕𝑥
𝑗
evaluated at the disease-free

equilibrium position, where 𝑠 = 1 = ℎ, 𝑠
𝑛
= 𝑠
𝑞
= 𝑝
𝑛
=

𝑝
𝑞
= 𝑐
𝑛
= 𝑐
𝑞
= 𝑖
𝑛
= 𝑖
𝑞
= 𝑟
𝑟
= 𝑟
𝑑
= 0. The basic

reproduction number is then the spectral radius of the next-
generationmatrix𝐹𝑉−1.Thus if (𝐹𝑉−1) is the spectral radius
of the matrix 𝐹𝑉−1, then

𝑅
0
=  (𝐹𝑉

−1
) =

1

𝛼
𝑛
𝛼
𝑞

[𝛼
𝑞
𝜃
1
{(1

+ (1 + 𝑎
3
+ (1 + 𝑎

2
) 𝑎
4
) 𝑎
𝑑

+ 𝜉
𝑞
(𝑎
2
𝑎
4
+ 𝑎
3
+ 𝑎
4
+ 1) + 𝑎

2
𝜏
𝑞
+ 𝜉
𝑛
+ 𝜌
𝑛
+ 𝜌
𝑞

+ 𝜏
𝑛
+ 𝜏
𝑞
)} − 𝛼

𝑛
(𝜃
1
− 1) (𝑎

1
𝜌
𝑞

+ 𝑎
1
[𝑎
2
𝑎
4
(𝑎
8
𝑎
𝑑
+ 𝜉
𝑞
) + 𝑎
2
𝜏
𝑞
])]

=
𝜃
1
𝐵
5

𝛼
𝑛

+
(1 − 𝜃

1
) 𝐵
6

𝛼
𝑞

,

(78)

as computed before.
The expression for 𝑅

0
has two parts. The first part

measures the number of new EVD cases generated by
an infected nonquarantined human. It is the product of
𝜃
1
(the proportion of susceptible individuals who become

suspected but remain nonquarantined), 𝐵
5
(which indicates

the contacts from this proportion of individuals with infected
individuals at various stages of the disease), and 1/𝛼

𝑛
(which

is the average duration a human remains as a suspected
nonquarantined individual). In the sameway, the second part
can be interpreted likewise.

The stability of the endemic steady state is obtained by
calculating the eigenvalues of the linearized matrix evaluated
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at the endemic state. The computations soon become very
complicated because of the size of the system and we proceed
with a simplification of the system.

3.5. Pseudo-Steady StateApproximation. EbolaVirusDisease
is a very deadly infection that normally kills most of its vic-
tims within about 21 days of exposure to the infection. Thus
when compared with the life span of the human, the elapsed
time representing the progression of the infection from first
exposure to death is short when compared to the total time
required as the life span of the human. Thus we set 𝜇 ≈
1/life span of human, so that the rates 𝛼

∗
, 𝛽
∗
, and so forth

will all be such that 1/rate ≈ resident time in given state,
some of which will be short compared with the life span of
the human. It is therefore reasonable to assume that

𝜇

𝜇 + rate
≈ small ⇒

𝜇 + rate
𝜇

≈ large, (79)

so that the scaling above renders some of the state variables
essentially at equilibrium. That is, the quantities, 1/𝛽

𝑛
, 1/𝛽
𝑞
,

1/𝛾
𝑛
, 1/𝛾
𝑞
, 1/𝛿
𝑛
, 1/𝛿
𝑞
, and 𝑏/𝜇, may be regarded as small

parameters so that, in the corresponding equations (43)–(48)
and (50), the state variables modelled by these equations are
essentially in equilibrium and we can evoke the Michaelis-
Menten pseudo-steady state hypothesis [30]. To proceed, we
make the pseudoequilibrium approximation

𝑝
𝑛
= 𝑐
𝑛
= 𝑖
𝑛
= 𝑠
𝑛
,

𝑝
𝑞
= 𝑠
𝑛
+ 𝑎
1
𝑠
𝑞
,

𝑐
𝑞
= 𝐴
1
𝑠
𝑛
+ 𝐴
2
𝑠
𝑞
,

𝑖
𝑞
= 𝐴
3
𝑠
𝑛
+ 𝐴
4
𝑠
𝑞
,

𝑟
𝑑
= 𝐴
7
𝑠
𝑛
+ 𝐴
8
𝑠
𝑞

(80)

to have the reduced system
𝑑𝑠

𝑑𝑡
= 1 − 𝜆𝑠 + (𝛼

𝑛
− 𝐵
3
) 𝑠
𝑛
+ (𝛼
𝑞
− 𝐵
4
) 𝑠
𝑞
− 𝑠, (81)

𝑑𝑠
𝑛

𝑑𝑡
= 𝜃
1
𝜆𝑠 − 𝛼

𝑛
𝑠
𝑛
, (82)

𝑑𝑠
𝑞

𝑑𝑡
= (1 − 𝜃

1
) 𝜆𝑠 − 𝛼

𝑞
𝑠
𝑞
, (83)

𝑑𝑟
𝑟

𝑑𝑡
= 𝐴
5
𝑠
𝑛
+ 𝐴
6
𝑠
𝑞
− 𝑟
𝑟
, (84)

𝑑ℎ

𝑑𝑡
= 1 − ℎ − 𝐵

1
𝑠
𝑛
− 𝐵
2
𝑠
𝑞
, (85)

and the total population and the force of infection also reduce
accordingly. In particular, we have

𝜆𝑠 = (𝜌
𝑛
(
𝑝
𝑛

ℎ
) + 𝜌
𝑞
(

𝑝
𝑞

ℎ
) + 𝜏
𝑛
(
𝑐
𝑛

ℎ
) + 𝜏
𝑞
(

𝑐
𝑞

ℎ
)

+ 𝜉
𝑛
(
𝑖
𝑛

ℎ
) + 𝜉
𝑞
(

𝑖
𝑞

ℎ
) + 𝑎
𝑑
(
𝑟
𝑑

ℎ
)) 𝑠 = (𝐵

5
(
𝑠
𝑛

ℎ
)

+ 𝐵
6
(

𝑠
𝑞

ℎ
)) 𝑠,

(86)

where the variables 𝑠 and the augmented population ℎ satisfy
the differential equations (81) and (85), respectively.

System (81)–(85) has the same steady states solutions as
the original system if we combine it with (80). However, on
its own, it represents a pseudo-steady state approximation
[30] of the original system. Clearly the reduced system has
two realistic steady states: 𝐸dfe and 𝐸

𝑒𝑒
, so that if 𝐸x∗ =

(𝑠
∗
, 𝑠
∗

𝑛
, 𝑠
∗

𝑞
, 𝑟
∗

𝑟
, ℎ
∗
) is a steady state solution, then

𝐸dfe = (1, 0, 0, 0, 1) ,

𝐸
𝑒𝑒
= (𝑠
∗
, 𝑠
∗

𝑛
, 𝑠
∗

𝑞
, 𝑟
∗

𝑟
, ℎ
∗
) ,

(87)

where, following the same method as was done in the full
system,

𝑠
∗

𝑞
=
𝐵
7

𝐵
8

,

𝑠
∗

𝑛
= (

𝛼
𝑞
𝜃
1

𝛼
𝑛
(1 − 𝜃

1
)
) 𝑠
∗

𝑞
,

𝑟
∗

𝑟
= 𝐴
5
𝑠
∗

𝑛
+ 𝐴
6
𝑠
∗

𝑞
,

𝑠
∗
= 1 − 𝐵

3
𝑠
∗

𝑛
− 𝐵
4
𝑠
∗

𝑞
,

ℎ
∗
= 1 − 𝐵

1
𝑠
∗

𝑛
− 𝐵
2
𝑠
∗

𝑞
.

(88)

All coefficients are as defined in (58). When steady states (88)
are rendered in parameters of the reduced system, taking into
consideration the fact that, from (68), 𝑧 = 𝐵

3
𝑦 + 𝐵

4
𝑥 and

𝐵
1
𝑦 + 𝐵
2
𝑥 = 1, we get

𝑠
∗
= (
𝑧 − 1

R − 1
) ,

𝑠
∗

𝑛
= 𝑦(

𝑅
0
− 1

R − 1
) ,

𝑠
∗

𝑞
= 𝑥(

𝑅
0
− 1

R − 1
) ,

𝑟
∗

𝑟
= (𝐴
5
𝑦 + 𝐴

6
𝑥) (
𝑅
0
− 1

R − 1
) ,

ℎ
∗
= (
(𝑧 − 1) 𝑅

0

R − 1
) .

(89)

The stability of the steady states is determined by the
eigenvalues of the linearized matrix of the reduced system
evaluated at the steady state x∗ = (𝑠∗, 𝑠∗

𝑛
, 𝑠
∗

𝑞
, 𝑟
∗

𝑟
, ℎ
∗
). If 𝐽(x∗) is

the Jacobian of the system near the steady state x∗, then
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𝐽 (x∗) =((

(

−𝐶
3
(x∗) − 1 −𝐶

4
(x∗) + 𝛼

𝑛
− 𝐵
3
−𝐶
5
(x∗) + 𝛼

𝑞
− 𝐵
4
0 −𝐶

6
(x∗)

𝜃
1
𝐶
3
(x∗) 𝜃

1
𝐶
4
(x∗) − 𝛼

𝑛
𝜃
1
𝐶
5
(x∗) 0 𝜃

1
𝐶
6
(x∗)

𝜃
1
𝐶
3
(x∗) 𝜃

1
𝐶
4
(x∗) 𝜃

1
𝐶
5
(x∗) − 𝛼

𝑞
0 𝜃
1
𝐶
6
(x∗)

0 𝐴
5

𝐴
6

−1 0

0 −𝐵
1

−𝐵
2

0 −1

)
)

)

, (90)

where 𝜃
1
= 1 − 𝜃

1
and

𝐶
3
(x∗) = 𝐵

5

𝑠
∗

𝑛

ℎ∗
+ 𝐵
6

𝑠
∗

𝑞

ℎ∗
=
𝛼
𝑛
𝑦 (𝑅
0
− 1)

𝜃
1
(𝑧 − 1)

,

𝐶
4
(x∗) = 𝐵

5

𝑠
∗

ℎ∗
=
𝐵
5

𝑅
0

,

𝐶
5
(x∗) = 𝐵

6

𝑠
∗

ℎ∗
=
𝐵
6

𝑅
0

,

𝐶
6
(x∗) = −(𝐵

5

𝑠
∗
𝑠
∗

𝑛

ℎ∗
2
+ 𝐵
6

𝑠
∗
𝑠
∗

𝑞

ℎ∗
2
) = −

𝛼
𝑛
𝑦 (𝑅
0
− 1)

𝜃
1 (𝑧 − 1) 𝑅0

.

(91)

The asterisk is used to indicate that the quantities so cal-
culated are evaluated at the steady state. We can perform a
stability analysis on the reduced system by noting that if 𝜁 is
an eigenvalue of (90), then 𝜁 satisfies the polynomial equation

𝑃
5
(𝜁, x∗)

= (𝜁 + 1)
2
(𝜁
3
+ 𝑄
2
(x∗) 𝜁2 + 𝑄

1
(x∗) 𝜁 + 𝑄

0
(x∗))

= 0,

(92)

where

𝑄
2
(x∗) = 𝛼

𝑛
+ 𝛼
𝑞
+ 𝐶
3
(x∗) − 𝐶

4
(x∗) 𝜃

1
− 𝐶
5
(x∗) 𝜃

1

+ 1,

𝑄
1
(x∗) = 𝛼

𝑞

− 𝜃
1
(−𝐵
1
𝐶
6
(x∗) + 𝛼

𝑞
𝐶
4
(x∗) + 𝐶

4
(x∗))

+ 𝐵
2
𝐶
6
(x∗) 𝜃

1
+ 𝐶
3
(x∗) (𝛼

𝑞
𝜃
1
+ 𝐵
3
𝜃
1
+ 𝐵
4
𝜃
1
)

+ 𝛼
𝑛
(𝛼
𝑞
+ 𝜃
1
𝐶
3
(x∗) − 𝐶

5
(x∗) 𝜃

1
+ 1) − 𝐶

5
(x∗)

⋅ 𝜃
1
,

𝑄
0
(x∗) = 𝛼

𝑞
𝜃
1
(𝐵
1
𝐶
6
(x∗) + 𝐵

3
𝐶
3
(x∗) − 𝐶

4
(x∗))

+ 𝛼
𝑛
(𝜃
1
(𝐵
2
𝐶
6
(x∗) + 𝐵

4
𝐶
3
(x∗) − 𝐶

5
(x∗)) + 𝛼

𝑞
) .

(93)

Now, the signs of the zeros of (92) will depend on the signs of
the coefficients 𝑄

𝑖
, 𝑖 ∈ {0, 1, 2}. We now examine these.

At the disease-free state where 𝑠∗ = 1 = ℎ∗, 𝑠∗
𝑛
= 𝑠
∗

𝑞
=

𝑟
∗

𝑟
= 0, or equivalently 𝑅

0
= 1, we have x∗ = xdfe =

(1, 0, 0, 0, 1) so that 𝐶
3
(xdfe) = 0, 𝐶4(xdfe) = 𝐵5, 𝐶5(xdfe) =

𝐵
6
, 𝐶
6
(xdfe) = 0, and (92) becomes

𝑃
5
(𝜁, xdfe) = (𝜁 + 1)

3
(𝜁
2
+ 𝑄dfe𝜁 + 𝑅dfe) = 0, (94)

where

𝑄dfe = 𝛼𝑛 + 𝛼𝑞 − 𝐵5𝜃1 − 𝐵6 (1 − 𝜃1)

= 𝛼
𝑛
(1 − 𝑅

0
) + 𝛼
𝑞
+ (1 − 𝜃

1
) 𝐵
6
(

𝛼
𝑛
− 𝛼
𝑞

𝛼
𝑞

) ,

𝑅dfe = 𝛼𝑞 (𝛼𝑛 − 𝐵5𝜃1) + 𝛼𝑛𝐵6 (𝜃1 − 1)

= 𝛼
𝑞
𝛼
𝑛
(1 − 𝑅

0
) .

(95)

The roots of (94) are −1, −1, −1, and (−𝑄dfe ±

√𝑄
2

dfe − 4𝛼𝑞𝛼𝑛(1 − 𝑅0))/2, showing that there is one
positive real solution as 𝑅

0
increases beyond unity and the

disease-free equilibrium loses stability at 𝑅
0
= 1. For the

local stability when 𝑅
0
≤ 1, the additional requirement

𝑄dfe > 0 is necessary.
At the endemic steady state, and in the original scaled

parameter groupings of the system, x∗ = x
𝑒𝑒

=

(𝑠
∗
, 𝑠
∗

𝑛
, 𝑠
∗

𝑞
, 𝑟
∗

𝑟
, ℎ
∗
), the coefficients of (92) simplify accordingly

and we have

𝑃
5
(𝜁, x∗) = (𝜁 + 1)2 (𝜁3 + 𝑃x

𝑒𝑒

𝜁
2
+ 𝑄x

𝑒𝑒

𝜁 + 𝑅x
𝑒𝑒

) = 0, (96)

where
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𝑃x
𝑒𝑒

=

𝐵
6
𝜃
1
𝜃
1 (𝑧 − 1) (𝛼𝑛 − 𝛼𝑞) + 𝛼𝑞𝑅0 (𝛼𝑛 (𝑅0 − 1) 𝑦 + (𝛼𝑞 + 1) 𝜃1 (𝑧 − 1))

𝛼
𝑞
𝜃
1
𝑅
0 (𝑧 − 1)

,

𝑄x
𝑒𝑒

=

𝛼
𝑛
𝜃
1
𝑄
11
+ 𝛼
2

𝑞
𝑅
0
𝑄
12

𝛼
𝑛
𝛼
𝑞
𝑅
0
(𝑧 − 1) 𝜃

1

,

𝑅x
𝑒𝑒

=

(𝑅
0
− 1) (R − 1) 𝛼

𝑛
𝛼
𝑞

(𝑧 − 1) 𝑅
0

,

(97)

where

𝑄
11
= (𝐵
6
(𝑧 − 1) 𝜃

1
(𝛼
𝑞
− 𝛼
𝑛
) + 𝛼
𝑞
(𝛼
𝑞
(𝐵
2
𝑥 + 𝑅
2

0
𝑧)

+ 𝛼
𝑛
(𝑅
0
− 1) (𝐵

2
𝑥 + 𝛼
𝑞
𝑅
0
𝑥 − 1))) ,

𝑄
12
= (𝛼
𝑛
(−𝜃
1
(𝐵
2
𝑥 + (𝑅

0
− 1) 𝑥 (𝛼

𝑞
+ 𝐵
3
) + 1)

+ 𝐵
2
𝑥 + 1) + 𝛼

𝑞
𝐵
3
𝜃
1
(𝑅
0
− 1) 𝑥) .

(98)

Now the necessary and sufficient conditions that will guaran-
tee the stability of the nontrivial steady state x

𝑒𝑒
will be the

Routh-Hurwitz criteria which, in the present parameteriza-
tions, are

𝑃x
𝑒𝑒

> 0,

𝑄x
𝑒𝑒

> 0,

𝑅x
𝑒𝑒

> 0,

𝑃x
𝑒𝑒

𝑄x
𝑒𝑒

− 𝑅x
𝑒𝑒

> 0.

(99)

With this characterization, we can then explore special cases
of intervention.

3.6. Some Special Cases. All initial suspected cases are quar-
antined: that is, 𝜃

1
= 0. In this case we see that 𝑠

𝑛
= 0 and we

have only the right branch of our flow chart in Figure 1. We
have here a problem involving infections only at the treatment
centres. Mathematically, we then have

𝑅
0
=
𝐵
6

𝛼
𝑞

,

𝑦 = 0,

𝑥 =
1

𝐵
2

,

𝑧 =
𝐵
4

𝐵
2

,

𝐶
3
=

𝛼
𝑞
𝑥 (𝑅
0
− 1)

𝑧 − 1
,

𝐶
6
= −
𝐶
3

𝑅
0

(100)

and (96) becomes

𝑃
5
(𝜁, x∗) = (𝜁 + 𝛼

𝑛
) (𝜁 + 1)

2
(𝜁
2

+ (1 +

(𝑅
0
− 1) 𝑥𝛼

𝑞

𝑧 − 1
) 𝜁

+ (

(R − 1) (𝑅
0
− 1) 𝛼

𝑞

𝑅
0
(𝑧 − 1)

)) ,

(101)

showing that all solutions of the equation 𝑃
5
(𝜁, x∗) = 0

are negative or have negative real parts whenever they are
complex, indicating that the nontrivial steady state is stable
to small perturbations whenever 𝑅

0
> 1. In this case we

can regard an increase in 𝑅
0
as an increase in the parameter

grouping 𝐵
6
.

All initial suspected cases escape quarantine: that is, 𝜃
1
=

1. In this case we see that 𝑠
𝑞
= 0 and initially we will be on the

left branch of our flow chart in Figure 1. The strength of the
present model is that, based on its derivation, it is possible
for some individuals to eventually enter quarantine as the
systems wake up from sleep and control measures kick into
place. Mathematically, we then have

𝑅
0
=
𝐵
5

𝛼
𝑛

,

𝑥 = 0,

𝑦 =
1

𝐵
1

,

𝑧 =
𝐵
3

𝐵
1

,

𝐶
3
=
𝛼
𝑛
𝑦 (𝑅
0
− 1)

𝑧 − 1
,

𝐶
6
= −
𝐶
3

𝑅
0

(102)
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Figure 1: Conceptual framework showing the relationships between the different compartments that make up the different population of
individuals and actors in the case of an EVD outbreak. Susceptible individuals include false suspected and probable cases. True suspects
and probable cases are confirmed by a laboratory test and the confirmed cases can later develop symptoms and die of the infection or
recover to become immune to the infection. Humans can also die naturally or due to other causes. Nonquarantined cases can become
quarantined through intervention strategies. Others run the course of the illness from infection to death without being quarantined. Flow
from compartment to compartment is as explained in the text.

and (96) becomes

𝑃
5
(𝜁, x∗) = (𝜁 + 𝛼

𝑛
) (𝜁 + 1)

2
(𝜁
2

+ (1 +
(𝑅
0
− 1) 𝑦𝛼

𝑛

𝑧 − 1
) 𝜁

+ (
(R − 1) (𝑅

0
− 1) 𝛼

𝑛

𝑅
0
(𝑧 − 1)

)) ,

(103)

again showing that all solutions of the equation 𝑃
5
(𝜁, x∗) =

0 are negative or have negative real parts whenever they
are complex, indicating that the nontrivial steady state is
stable to small perturbations whenever 𝑅

0
> 1. In this

case we can regard an increase in 𝑅
0
as an increase in the

parameter grouping 𝐵
5
. 𝑅
0
in this case appears larger than

in the previous cases.
The rate at which suspected individuals become probable

cases is the same: that is, 𝛼
𝑁
= 𝛼
𝑄
. In this case the flow

from being a suspected case to a probable case is the same
in all circumstances, irrespective of whether or not one is

quarantined or nonquarantined. Mathematically, we have
that 𝛼

𝑛
= 𝛼
𝑞
and (96) becomes

𝑃
5
(𝜁, x∗) = (𝜁 + 𝛼

𝑞
) (𝜁 + 1)

2
(𝜁
2

+ (1 +

(𝑅
0
− 1) 𝑥𝛼

𝑞

(𝑧 − 1) (1 − 𝜃
1
)
) 𝜁

+ (

(R − 1) (𝑅0 − 1) 𝛼𝑞

𝑅
0
(𝑧 − 1)

)) .

(104)

In this case as well, all solutions of the equation 𝑃
5
(𝜁, x∗) =

0 either are negative or have negative real parts whenever
𝑅
0
> 1 and 𝑧 > 1, showing that in this case again the steady

state is stable to small perturbations. In this particular case,
an increase in 𝑅

0
can be regarded as an increase in the two

parameter groupings 𝐵
5
and 𝐵

6
.

4. Parameter Discussion

Some parameter values were chosen based on estimates in
[15, 20], on the 2014 Ebola outbreak, while others were
selected from past estimates (see [9, 14, 18]) and are sum-
marized in Table 2. In [20], an estimate based on data
primarily from March to August 20th yielded the following
average transmission rates and 95% confidence intervals: 0.27



20 Computational and Mathematical Methods in Medicine

(0.27, 0.27) per day in Guinea, 0.45 (0.43, 0.48) per day in
Sierra Leone, and 0.28 (0.28, 0.29) per day in Liberia. In [15],
the number of cases of the 2014 Ebola outbreak data (up
until early October) was fitted to a discrete mathematical
model, yielding estimates for the contact rates (per day) in the
community and hospital (considered quarantined) settings as
0.128 in Sierra Leone for nonquarantined cases (and 0.080
for quarantined cases, about a 61% reduction) while the rates
in Liberia were 0.160 for nonquarantined cases (and 0.062
for quarantined cases, close to a 37.5% drop). The models in
[15, 20] did not separate transmission based on early or late
symptomatic EVD cases, which was considered in ourmodel.
Based on the information, we will assume that effective
contacts between susceptible humans and late symptomatic
EVD patients in the communities fall in the range [0.12, 0.48]
per day, which contains the range cited in [16]. Thus 𝜉

𝑁
∈

[0.12, 0.48]. However, wewill consider scenarios inwhich this
parameter varies. Furthermore, if we assume about a 37.5%
to 61% reduction in effective contact rates in the quarantined
settings, then we can assume that 𝜉

𝑄
= 𝜙
𝑄
𝜉
𝑁
, where

𝜙
𝑄
∈ [0.0375, 0.062]. However, to understand how effective

quarantining Ebola patients is, general values of 𝜙
𝑄
∈ [0, 1]

can be considered. Under these assumptions, a small value of
𝜙
𝑄
will indicate that quarantining was effective, while values

of 𝜙
𝑄
close to 1 will indicate that quarantining patients had no

effect in minimizing contacts and reducing transmissions.
Since patients with EVD at the onset of symptoms are less

infectious than EVD patients in the later stages of symptoms
[2, 10], we assume that the effective contact rate between
confirmed nonquarantined early symptomatic individuals
and susceptible individuals, denoted by 𝜏

𝑁
, is proportional

to 𝜉
𝑁
with proportionality constant 𝑞

𝑁
∈ [0, 1]. Likewise,

we assume that the effective contact rate between confirmed
quarantined early symptomatic individuals and susceptible
individuals is proportional to 𝜉

𝑞
with proportionality con-

stant 𝑞
𝑞
∈ [0, 1]. Thus, 𝜏

𝑁
= 𝑞
𝑁
𝜉
𝑁
and 𝜏

𝑄
= 𝑞
𝑄
𝜉
𝑄
, with

0 < 𝑞
𝑁
, 𝑞
𝑄
< 1.

The range, for the parameter 𝑎
𝐷
, of the effective con-

tact rate between cadavers of confirmed late symptomatic
individuals and susceptible individuals was chosen to be
[0.111, 0.489] per day, where 0.111 is the rate estimated in [15]
for Sierra Leone and 0.489 is that for Liberia. With control
measures and education in place, these rates can be much
lower.

The incubation period of EVD is estimated to be between
2 and 21 days [2, 7–9], with a mean of 4–10 days reported in
[8, 9]. In [10], a mean incubation period of 9–11 days was
reported for the 2014 EVD. Here, we will consider a range
from 4 to 11 days, with a mean of about 10 days used as the
baseline value.Thuswewill consider that𝛼

𝑁
and𝛼
𝑄
are in the

range [1/11, 1/4]. At the end of the incubation period, early
symptoms may emerge 1–3 days later [10], with a mean of 2
days. Thus the mean rate at which nonquarantined (𝛽

𝑁
) and

quarantined (𝛽
𝑄
) suspected cases become probable cases lies

in [1/3, 1] [12]. About 1 or 2 to 4 days later after the early
symptoms, more severe symptoms may develop so that the
rates at which nonquarantined (𝛾

𝑁
) and quarantined (𝛾

𝑄
)

probable cases become confirmed cases lie in [1/4, 1/2].

The parameter 𝛾
𝑁

measures the rate at which early
symptomatic individuals leave that class. This could be as a
result of recovery or due to increase and spread of the virus
within the human. It takes about 2 to 4 days to progress from
the early symptomatic stage to the late symptomatic stage,
so that 𝛾

𝑁
, 𝛾
𝑄
∈ [1/4, 1/2], which can be assumed to be the

reciprocal of the mean time it takes from when the immune
system is either completely overwhelmed by the virus or kept
in check via supportive mechanism. Severe symptoms are
followed either by death after about an average of two to
four days beyond entering the late symptomatic stage or by
recovery [12], and thus we can assume that 𝛿

𝑁
and 𝛿

𝑄
are

in the range [1/4, 1/2]. If on the other hand the EVD patient
recovers, then it will take longer for patient to be completely
clear of the virus. Notice that, based on the ranges given
above, the time frames are [6, 16] days from the onset of
symptoms of Ebola to death or recovery. The range from the
onset of symptoms which commences the course of illness
to death was given as 6–16 days in [8], while the range
for recovery was cited as 6–11 days [8]. For our baseline
parameters, the mean time from the onset of the illness to
death or recovery will be in the range of 6–11 days.

Here, we will consider that the recovery rate for quar-
antined early symptomatic EVD patients lies in the range
[0.4829, 0.5903] per day with a baseline value of 0.5366 per
day, as cited in [16].Thus 𝑟

𝐸𝑄
∈ [0.4829, 0.5903]. If we assume

that patients quarantined in the hospital have a better chance
of surviving than those in the community or at home, without
the necessary expert care that some of the quarantined EVD
patients may get, then we can consider that the recovery rate
for nonquarantined EVD patients, in the community, would
be slightly lower. Thus we scale 𝑟

𝐸𝑄
by some proportion 𝜔 ∈

[0, 1], so that 𝑟
𝐸𝑁
= 𝜔𝑟
𝐸𝑄
. Since late symptomatic patients

have a much lower recovery chance, then both 𝑟
𝐿𝑁

and 𝑟
𝐿𝑄

will be lower than 𝑟
𝐸𝑁

and 𝑟
𝐸𝑄
, respectively. Hence we will

consider that 𝑟
𝐿𝑁
= 𝜅𝑟
𝐸𝑁

and 𝑟
𝐿𝑄
= 𝜅𝑟
𝐸𝑄
, where 0 < 𝜅 ≪ 1.

Sometimes late symptomatic EVD patients are removed from
the community and quarantined. Here we assume a mean of
2 days so that 𝜎

𝑁
= 0.5 per day.

The fractions 𝜃
𝑖
measure the proportions of individu-

als moving into various compartments. If we assume that
members in the quarantined classes are not left unchecked
but have medical professionals checking them and giving
them supportive remedies to boost their immune system to
fight the Ebola Virus or enable their recovery, then it will be
reasonable to assume that 𝜃

6
, 𝜃
7
, 𝜃
4
, and 𝜃

5
are all greater than

0.5. If such an assumption is not made, then the parameters
can be chosen to be equal or close to each other.

The parameter Π is chosen to be 555 per day as in [16].
Furthermore, the parameters 𝜌

𝑁
and 𝜌

𝑄
and the effective

contact rates between probable nonquarantined and, respec-
tively, quarantined individuals and susceptible individuals
will be varied to see their effects on the model dynamics.
However, the values chosen will be such that the value of 𝑅

0

computed is within realistic reported ranges.
The parameter 𝜇, the natural death rate for humans,

is chosen based on estimates from [13]. The parameter 𝑏
measures the time it takes from death to burial of EVD
patients. A mean value of 2 days was cited in [14] for the 1995
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Table 2: Parameters, baseline values, and ranges of baseline values with references.

Parameters Baseline values Range of values Reference
Π 3, 555 Varies
𝜌
𝑁

Varies Varies
𝜌
𝑄

Varies Varies
𝜉
𝑁

0.27 [0.12, 0.48] Estimated∗

𝜏
𝑁

𝑞
𝑁
𝜉
𝑁
, 𝑞
𝑁
= 0.75 𝑞

𝑁
∈ [0, 1] Variable

𝜉
𝑄

𝜙
𝑄
𝜉
𝑁
, 𝜙
𝑄
= 0.5 𝜙

𝑄
∈ [0, 1] Estimated∗

𝜏
𝑄

𝑞
𝑄
𝜉
𝑄
, 𝑞
𝑄
= 0.75 𝑞

𝑄
∈ [0, 1] Variable

𝜃
𝑖

𝜃
𝑖
∈ [0, 1], 𝑖 = 1, 2, . . . , 7 𝜃

𝑖
∈ [0, 1], 𝑖 = 1, 2, . . . , 7 Variable

𝛼
𝑁

1/10 [1/11, 1/4] [8–10]
𝛼
𝑄

1/10 [1/11, 1/4] [8–10]
𝛽
𝑁

0.5 [1/3, 1] [10]
𝛽
𝑄

1/2 [1/3, 1] [10]
𝛾
𝑁

1/3 [1/4, 1/2] [10, 12]
𝛾
𝑄

1/3 [1/4, 1/2] [10, 12]
𝛿
𝑁

1/3 [1/4, 1/2] [10, 12]
𝛿
𝑄

1/3 [1/4, 1/2] [10, 12]
𝜇 1/(60 × 365) [1/(40 × 365), 1/(70 × 365)] day−1 [13]
𝑏 1/2.5 [1/4.50, 1/2] day−1 [14, 15]
𝑎
𝐷

0.3000 [0.111, 0.489] day−1 [15]
𝑟
𝐸𝑄

0.5366 [0.4829, 0.5903] [16]
𝑟
𝐸𝑁

𝜔𝑟
𝐸𝑄
, 𝜔 = 0.88 𝜔 ∈ [0, 1] Estimate

𝑟
𝐿𝑁

𝜅𝑟
𝐸𝑁

, 𝜅 = 0.02 𝜅 ≪ 1 Estimate
𝑟
𝐿𝑄

𝜅𝑟
𝐸𝑄
, 𝜅 = 0.02 𝜅 ≪ 1 Estimate

𝜎
𝑁

0.5 [1/3, 1] Estimate
∗Estimates discussed in Section 4.

and 2000 Ebola outbreak epidemics in the Democratic
Republic of Congo and Uganda, respectively. For the 2014
West African Outbreak, the estimates were 2.01 days in
Liberia and 4.50 days in Sierra Leone [15].

5. Numerical Simulation of the Scaled
Reduced Model

The parameter values given in Table 2 were used to carry
out some numerical simulations for the reducedmodel, (81)–
(85), when the constant recruitment term is 555 persons per
day. The varying parameters were chosen so that 𝑅

0
would

be within ranges of reported values, which are typically less
than 2.5 (see, e.g., [16, 22]). In Figure 2, we show a time
series solution for a representative choice of values for the
parameters 𝜌

𝑁
and 𝜌
𝑄
. Figures 2(a)–2(e) show the long term

solutions to the reduced model exhibiting convergence to the
stable nontrivial equilibrium in the case where 𝑅

0
> 1, the

case with sustained infection in the community. Figure 2(f)
then shows an example of convergence to the trivial steady
state when 𝑅

0
< 1, the case where the disease is eradicated. In

that example we notice that as 𝑅
0
< 1, 𝑠
𝑛
→ 0 as 𝑛 → ∞ and

this in turn implies that 𝑠
𝑞
→ 0 as 𝑛 → ∞ and eventually the

system relaxes to the trivial state (𝑠, 𝑠
𝑛
, 𝑠
𝑞
, 𝑟
𝑟
, ℎ) = (1, 0, 0, 0, 1)

for large time.
We note here that the computed value of𝑅

0
can be shown

to be linear in the variables 𝜌
𝑄
and 𝜌

𝑁
, when eventually all

parameters have been assigned; it may be written as 𝑅
0
=

𝑟
0
+𝑟
1
𝜌
𝑄
+𝑟
2
𝜌
𝑁
, where 𝑟

𝑖
, 𝑖 = 0, 1, 2, are positive constants that

can be shown to be dependent on the other parameters. Thus
𝑅
0
will increase linearlywith increase in any of the parameters

𝜌
𝑄
and 𝜌

𝑁
for fixed given values of the other parameters.

Though we have theoretically found, for example, that 𝑠∗
becomes infinite when R is near one equivalent to 𝑅

0
being

near 1/𝑧, this case does not arise because we have assumed in
the analysis that 𝑧 > 1. Thus the case 0 ≤ 𝑧 < 1 is linked with
the trivial steady state.

The situation shown in Figure 3 has important conse-
quences for control strategies. While 𝑠∗

𝑛
varies sharply for

a narrow band of reproduction numbers, its values do not
change much for larger values of 𝑅

0
. Referring to Figure 3,

an application of a control measure that will reduce 𝑅
0
say

from a high value of 10 down to 5, a 50% reduction, will not
appreciably affect the rest of the disease transmission. Thus
the system is best controlledwhen𝑅

0
is small which can occur

in the early stages of the infection or late in the infectionwhen
some effective control measures have already been instituted
such as effective quarantining or prompt removal of EVD
deceased individuals. Notice that as 𝑅

0
further increases, the

number of susceptible individuals continues to drop.Wenote,
however, that typical values of𝑅

0
computed for the 2014 Ebola

outbreak are less than 2.5.
Next, we investigate the effect of 𝜉

𝑁
on 𝑅
0
and the

model dynamics. In Figure 2(f), we showed an example of
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Figure 2: (a)–(e) Time series showing convergence of the solutions to the steady states for the nondimensional reduced model when the
constant recruitment term is 555 persons per day. In this example, 𝜃

1
= 0.85 and 𝜌

𝑁
= 1.15 and 𝜌

𝑄
= 0.85, and all the other parameters are

as in Table 2, giving values of 𝑅
0
= 1.102. In this case, the nonzero steady state is stable and the solution converges to the steady state value

as given by (89) as 𝑡 → ∞. (f) Time series showing the long term behaviour of the variable 𝑠
𝑛
in the reduced model for 𝜌

𝑁
= 𝜌
𝑄
= 0.8 and

all other values of the parameters are as given in Table 2. In this case 𝑅
0
= 0.88 and so the only steady state is the trivial steady state which is

stable.

convergence to the trivial steady state for 𝜌
𝑁
= 0.8 = 𝜌

𝑄

for the nondimensional reduced model when the constant
recruitment term is 555 persons per day.Themodel dynamics
yielded an 𝑅

0
value of 0.88 < 1, when all other parameters

were as given in Table 2. From this scenario, we increased
only 𝜉

𝑁
from its baseline Table 2 value of 0.27 to 0.453.

This yields an increase in 𝑅
0
to 1.00038 and we see from

Figures 4(a) and 4(b) that the disease begins to propagate
and stabilize within the community. There is a major peak
which starts to decay as EVD deaths begin to rise. An
estimated size of the epidemic can be computed as the
difference between 𝑠 and ℎ when the disease dynamics settles
to its equilibrium state. As more and more persons become
infected, 𝑅

0
increases and the estimated size of the epidemic
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Figure 3: Graph showing the behaviour of the steady states 𝑠∗ and 𝑠∗
𝑛
as a function of 𝑅

0
. (a) This graph shows the form of the steady state 𝑠∗

as a function of 𝑅
0
. (b) This graph shows the form of the steady state 𝑠∗

𝑛
as a function of 𝑅

0
. The steady state solution 𝑠∗

𝑛
varies greatly only in

a narrow band of reproduction numbers but saturates for large values of 𝑅
0
. On the other hand, 𝑠∗ continues to drop to zero as 𝑅

0
increases.
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Figure 4: (a)–(d) Time series plot showing the propagation and stabilization of EVD to a stable nontrivial steady state for the nondimensional
reduced model when the constant recruitment term is 555 persons per day and with 𝜌

𝑁
= 𝜌
𝑄
= 0.8 and 𝜃

1
= 0.85 as used in Figure 2(f).

Except for 𝜉
𝑁
that is increased from its baseline value of 0.27, all other parameters are as in Table 2. In graphs (a) and (b), 𝜉

𝑁
is increased

to 0.453. This yields 𝑅
0
= 1.00038, slightly bigger than 1. The graphs show that there is a major peak which starts to decay as EVD deaths

begin to rise. The size of the epidemic can be estimated as the difference in the areas between the 𝑠 and ℎ curves as the disease settles to its
steady state. Graphs (c) and (d) show the model dynamics when 𝜉

𝑁
is further increased to 0.48, which yields 𝑅

0
= 1.01765. In graphs (c) and

(d), the oscillations are more pronounced and the size of the epidemic is larger due to the increased effective contacts with late symptomatic
individuals.
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Figure 5: (a)-(b) Time series plot showing the propagation and stabilization of EVD to a stable nontrivial steady state for the nondimensional
reduced model when the constant recruitment term is 555 persons per day and with 𝜌

𝑁
= 1.15, 𝜌

𝑄
= 0.85, and 𝜃

1
= 0.85 as in Figures 2(a)–

2(e). Except for 𝜉
𝑁
that is increased from 0.27 to 0.36, all the other parameters are as given in Table 2, and the corresponding 𝑅

0
value is

𝑅
0
= 1.159. Notice that, in this case, the disease has a higher frequency of oscillations and the difference between the areas under ℎ and 𝑠 is

considerably larger indicating that the size of the disease burden is considerably larger in this case.

also increases as is expected. In particular, increasing 𝜉
𝑁

further to 0.48 increases 𝑅
0
to 1.01765, and, from Figures

4(c) and 4(d), the difference between 𝑠 and ℎ is visibly
larger compared to the difference from Figures 4(a) and 4(b).
Moreover, the oscillatory dynamics becoming more pro-
nounced indicated a higher back and forthmovement activity
between the 𝑠 and 𝑠

𝑛
and 𝑠
ℎ
classes.

In Figures 2(a)–2(e), we showed an example of the long
term dynamics of the solutions of the reduced model for
𝜌
𝑁
= 1.15 and 𝜌

𝑄
= 0.85. For this case, we obtained

𝑅
0
= 1.102 > 1 and the model dynamics show how the

reduced model converges to a stable nontrivial equilibrium,
when all other parameters are as stated as in Table 2. From
this point, if we increase only 𝜉

𝑁
from its default value of 0.27

to 0.36, we see that 𝑅
0
increases to approximately 1.159 and

the model exhibits irregular random oscillations with higher
frequency but eventually stabilizes (Figures 5(a) and 5(b)).
The size of the epidemic is considerably larger in this case.
This highlights the importance of reducing contacts between
EVD patients and susceptible humans in controlling the size
of the disease burden and lowering the impact of the disease.

5.1. Fade-Outs and Epidemics in Ebola Models. Our model
results as highlighted in Figures 2(a)–2(e), 4, and 5 indicate
that it is possible to have a long term endemic situation
for Ebola transmission, if conditions are right. In particular,
in our model, for the case where we have a relatively large
constant recruitment term of 555 persons per day and with
available resources to sustain the quarantine efforts then as
long as there are people in the community (nonquarantined)
with the possibility to come in contact with infectious
EVD fluids, then the disease can be sustained as long as
𝑅
0
> 1 (Figures 2(a)–2(e), 4, and 5). Increasing control

by reducing contacts early enough between suspected and
probable individuals with susceptible individuals can bring
down the size of 𝑅

0
to a value <1 which eventually leads to

the eradication of the disease. Thus control which includes
quarantining has to be comprehensive and sustained until
eradication is achieved.

The 2014 Ebola outbreak did not show sustained disease
states. The disease dynamics exhibited epidemic fade-outs.
Here, we show that such fade-outs are possible with our
model. To investigate the epidemic-like fade-outs, we first
note that due to the scaling adopted in our model, our time
scales are large. However, any epidemic-like EVD behaviour
would be expected to occur over a shorter timescale. Thus,
for the results illustrated here, we plot the model dynamics
in terms of the original variable by simulating the equations
that make up the system, (11)–(23). To illustrate that the large
time scales do not affect the long term dynamics of the model
results, we first present a graph of the original system in the
case where the parameters are maintained as those used in
Figure 6 with Π = 555 persons per day, 𝜃

1
= 0.85 and

𝜌
𝑁
= 1.15 and 𝜌

𝑄
= 0.85, and with all the other parameters

as given in Table 2.The 𝑅
0
value was 1.102 and so a sustained

disease with no other effort is possible over a long time frame
of more than 10,000 days.

When the number of individuals recruited daily reduces,
then we can show that, for the case where Π = 3 persons
per day, 𝜃

1
= 0.85 and 𝜌

𝑁
= 2 and 𝜌

𝑄
= 1, and all the

other parameters remain as in Table 2; then an epidemic-like
behaviour is obtained (see Figure 7).

The dynamics of Figures 6 and 7 indicate that quaran-
tining alone is not sufficient to eradicate the Ebola epidemic
especially when there is a relative high number of daily
recruitment. In fact, quarantining can instead serve as a buffer
zone allowing the possibility of sustained disease dynamics
when there are a reasonable number of people recruited
each day. However, when the daily recruitment is controlled,
reduced to a value of 3 per day, then the number of new daily
infections is reduced to a low value as depicted in Figures
7(a)–7(c). However, the estimated cumulative number of
infections increases daily (see Figure 7(d)).
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Figure 6: (a)–(c) Time series showing convergence of the solutions to the steady states for the full model in dimensional form when the
constant recruitment term is 555 persons per day. In this example, 𝜃

1
= 0.85 and 𝜌

𝑁
= 1.15 and 𝜌

𝑄
= 0.85, and all the other parameters are

as in Table 2, giving a value of 𝑅
0
= 1.102. The graph shows the short scale dynamics as well as the long term behaviour showing stability of

the nonzero steady state.

6. Discussion and Conclusion

In this paper we set out to derive a comprehensive model
for the dynamics of Ebola Virus Disease transmission in a
complex environment where quarantining is not effective,
meaning that some suspected cases escape quarantine while
others do not. When the West African countries of Liberia,
Guinea, and Sierra Leone came face to face with Ebola
Virus Disease infection in 2014, it took the international
community some time to react to the crises. As a result,
most of the initial cases of EBV infection escapedmonitoring
and entered the community. African belief systems and other
traditional practices further compounded the situation and
before long large number of cases of EBV infections were
in the community. Even when the international community
reacted and started putting in place treatment centres, it still
took some time for people to be sensitized on the dangers they
are facing. The consequence was that infections continued
in families, during funerals, and even in hospitals. People
checked into hospitals and would not tell the truth about
their case histories and as a result somemedical practitioners
got exposed to the infection. A case in point is that of Dr.
Stella Ameyo Adadevoh, an Ebola victim and everyday hero
[31], who prevented the spread of Ebola in Nigeria and paid
with her life. We still pay tribute and honour to her and the

other health workers whose dedication was inspirational and
helpful in curbing the 2014 Ebola outbreak in Africa.

As we now look forward with optimism for a better and
Ebola-free tomorrow, there is work going on in the scientific
community to develop vaccines [2]. Mathematical modelling
of the dynamics and transmission of Ebola provides unique
avenues for exploration of possible management scenarios in
the event of an EVD outbreak, since, during an outbreak,
management of the cases is crucial for containment of the
spread of the infection within the community. In this paper
we have presented a comprehensive ordinary differential
equation model that handles management issues of EVD
infection. Our model takes care of quarantine and nonquar-
antine cases and therefore can be used to predict progression
of disease dynamics in the population. Our analysis has
shown that the initial response to all suspected cases of EVD
infection is crucial. This is captured through the parameter
𝜃
1
which measures the initial fraction of suspected cases

that are put into quarantine. We have shown that the basic
reproduction number can be indexed by this parameter in the
sense that when all cases are initially quarantined the spread
of the infection can only take place at the treatment centres,
but in cases where all suspected cases escape quarantine, the
reproduction number can be large. Our model has been able
to quantify the densities of infected and recovered individuals
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Figure 7: (a)-(b) Time series showing epidemic-like behaviours of the solutions to the steady states for the full model in dimensional form
when the constant recruitment term is 3 persons per day over a short time scale. In this example, 𝜃

1
= 0.85 and 𝜌

𝑁
= 2 and 𝜌

𝑄
= 1, and all the

other parameters are as in Table 2. The value of 𝑅
0
= 1.63455. The graph shows the short scale dynamics exhibiting epidemic-like behaviour

that fades out.

within the population based on baseline parameters identi-
fied during the 2014 Ebola Virus Disease outbreak in Africa.

The basic reproduction number in our model depends
on the initial exposure rates including exposure to cadavers
of EVD victims. The provision of scope for further quar-
antining during the progression of the infection means that
these exposure rates are weighted accordingly, depending
on whether or not the system woke up from slumber and
picked up those personswho initially escaped quarantine. For
example, the parameter 𝜏

𝑄
which measures the effective con-

tact rate between confirmed quarantined early symptomatic
individuals and susceptible individuals is eventually scaled
by the proportions 𝜃

3𝑎
and 𝜃
2𝑎

which, respectively, are those
proportions of suspected and probable cases that eventually
progress to become EVD patients and have escaped quar-
antine. Thus our framework can progressively be used at
each stage to manage the progression of infections in the
community.

Our results show that eventually the system settles down
to a nonzero fixed point when there is constant recruitment
into the population of 555 persons per day and for 𝑅

0
> 1.

The values of the steady states are completely determined in
terms of the parameters in this case. Our analysis also shows

that it is possible to control EVD infection in the community
provided we reduce and maintain the reproduction number
to below unity. Such control measures are possible if there is
effective contact tracing and identification of EVD patients
and effective quarantining, since a reduction of the propor-
tion of cases that escape quarantine reduces the value of 𝑅

0
.

Additionally, our model results indicate that when there
are a high constant number of recruitment into an EVD
community, quarantining alone may not be sufficient to
eradicate the disease. It may serve as a buffer enhancing
a sustained epidemic. However, reducing the number of
persons recruited per day can bring the diseases to very low
values.

To demonstrate the feasibility of our results, we per-
formed a pseudoequilibrium approximation to the system
derived based on the assumption that the duration of man-
ifestation of EVD infection in the community, per individual,
is short when compared with the natural life span of an
average human. The reduced model was used to show that
all steady state solutions are stable to small perturbations
and that there can be oscillatory returns to the equilibrium
solution.These results were confirmed with numerical simu-
lations. Given the size of the system, we have not been able to
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perform a detailed nonlinear analysis on themodel. However
the discussion on the nature of the parameters for themodel is
based on the statistics gathered from the 2014 EVD outbreak
in Africa and we believe that ourmodel can be useful in char-
acterizing and studying a class of epidemics of Ebola-type.
We have not yet carried out a complete sensitivity analysis on
all the parameters to determine the most crucial parameters
in our model. This is under consideration. Furthermore, the
effect of stochasticity seems relevant to study. This and other
aspects of the model are under consideration.

Notations

State Variables and Their Descriptions

𝐻
𝐿
(𝑡): Total population density of living humans at

any time 𝑡
𝐻(𝑡): The total population density at time 𝑡 of

living humans together with Ebola-related
cadavers, that is, those humans who have
died of EVD and have not yet been disposed
at time 𝑡

𝑆(𝑡): Population density at time 𝑡 of all susceptible
humans in the population

𝑆
𝑁
(𝑡), 𝑆
𝑄
(𝑡): Population densities at time 𝑡 of all humans

that are known to have been in contact with
or have a history of association with any
person known to have once had or died of
EVD; these are suspected Ebola Virus patient
cases that are either not quarantined 𝑆

𝑁
or

quarantined 𝑆
𝑄
and who are not yet showing

any Ebola-like symptoms
𝑃
𝑁
(𝑡), 𝑃
𝑄
(𝑡): Population densities at time 𝑡 of all persons

suspected of having EVD infection and who
present with fever and at least three other
Ebola-like symptoms; these probable cases
are either not quarantined 𝑃

𝑁
or quarantined

𝑃
𝑄

𝐶
𝑁
(𝑡), 𝐶
𝑄
(𝑡): Population densities at time 𝑡 of all probable

Ebola Virus infected humans who after a lab
test have been confirmed to indeed have
EVD infection and who still present only
early Ebola-like symptoms of fever, aches,
tiredness, and so forth; they are called
confirmed early symptomatic in the sense
explained in the text; these confirmed Ebola
Virus carriers are either not quarantined 𝐶

𝑁

or quarantined 𝐶
𝑄

𝐼
𝑁
(𝑡), 𝐼
𝑄
(𝑡): Population densities at time 𝑡 of all

confirmed EVD patients who now present
with full later stage Ebola-like symptoms;
they are called confirmed late symptomatic
in the sense explained in the text; these
confirmed EVD patients with full blown
symptoms are either not quarantined 𝐼

𝑁
or

quarantined 𝐼
𝑄

𝑅
𝑅
(𝑡): Population density at time 𝑡 of all humans

who were once infected with EVD infection
and who have recovered from the infection;
this class of persons are then immune to any
further infection and are removed from the
susceptible pool

𝑅
𝐷
(𝑡): Population density at time 𝑡 of all humans

who were once infected with EVD and who
have died because of the EVD infection; this
class of persons though dead are still
infectious

𝑅
𝑁
(𝑡): Population density at time 𝑡 of all humans

who died naturally or due to other causes;
this is just a collection class

𝐷
𝐷
(𝑡): Population density at time 𝑡 of all

Ebola-related dead humans removed from
the infection cycle because they received
proper burial or were cremated.

Parameters, Their Descriptions, and Their Corresponding
Quasidimension

Π: Net constant migration rate of humans,
𝐻
𝐿
𝑇
−1

𝜌
𝑁
: Effective contact rate between probable
nonquarantined individuals and susceptible
individuals; a fraction 𝜃

3
of these contacts

are potentially infectious to the susceptible
humans, 𝑇−1

𝜌
𝑄
: Effective contact rate between probable
quarantined individuals and susceptible
individuals; a fraction 𝜃

7
of these contacts

are potentially infectious to the susceptible
humans, 𝑇−1

𝜏
𝑁
: Effective contact rate between confirmed
nonquarantined early symptomatic
individuals and susceptible individuals, 𝑇−1

𝜉
𝑁
: Effective contact rate between confirmed
nonquarantined late symptomatic
individuals and susceptible individuals, 𝑇−1

𝜏
𝑄
: Effective contact rate between confirmed
quarantined early symptomatic individuals
and susceptible individuals, 𝑇−1

𝜉
𝑄
: Effective contact rate between confirmed
quarantined late symptomatic individuals
and susceptible individuals, 𝑇−1

𝑎
𝐷
: Effective contact rate between cadavers of
confirmed late symptomatic individuals and
susceptible individuals, 𝑇−1

𝜆: A real function depending on the active
members of the population representing the
force of infection, 𝑇−1

𝜃
𝑖
: Proportions; 0 ≤ 𝜃

𝑖
≤ 1, 𝑖 = 1, 2, . . . , 7, 1

𝛼
𝑁
: Rate at which nonquarantined suspected
cases become nonquarantined probable
cases, 𝑇−1

𝛼
𝑄
: Rate at which quarantined suspected cases
become quarantined probable cases, 𝑇−1
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𝛽
𝑁
: Rate at which nonquarantined probable
cases become nonquarantined confirmed
early symptomatic cases, 𝑇−1

𝛽
𝑄
: Rate at which quarantined probable cases
become quarantined confirmed early
symptomatic cases, 𝑇−1

𝛾
𝑁
: Rate at which nonquarantined confirmed
early symptomatic cases become
nonquarantined confirmed late symptomatic
cases, 𝑇−1

𝛾
𝑄
: Rate at which quarantined confirmed early

symptomatic cases become quarantined
confirmed late symptomatic cases, 𝑇−1

𝛿
𝑁
: Rate at which nonquarantined confirmed late
symptomatic cases die due to the EVD, 𝑇−1

𝛿
𝑄
: Rate at which quarantined confirmed late

symptomatic cases die due to the EVD, 𝑇−1
𝜇: Constant natural death rate for humans, 𝑇−1
𝑏: Rate at which cadavers are removed and

buried, 𝑇−1
𝑟
𝐸𝑁

: Rate of recovery of nonquarantined
confirmed early symptomatic cases, 𝑇−1

𝑟
𝐿𝑁

: Rate of recovery of nonquarantined
confirmed late symptomatic cases, 𝑇−1

𝑟
𝐸𝑄
: Rate at which quarantined confirmed early
symptomatic cases recover, 𝑇−1

𝑟
𝐿𝑄
: Rate at which quarantined confirmed late
symptomatic cases recover, 𝑇−1

𝜎
𝑁
: Rate at which nonquarantined confirmed
late symptomatic cases are removed and
quarantined, 𝑇−1.
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